Rigid Bodies Modeling

Robotics Fundamentals

Date: August, 2017. Location: Quito, Pichincha, Ecuador.

Actividad WBS (Fundamentals)
Lunes 14, 8:31 am

  1. Robotics: Dynamics and Control
    1. Rigid Bodies
    2. Transformation example in Matlab

 

We’re gonna be talking about rigid bodies. The first thing you wanna know about rigid bodies is besides the fact that they’re rigid, you wanna think about modelling them. And in order to model them, we attach reference frames to them. So here I show reference frame A, which is essentially an origin O and a set of axes, x, y, and z. We would also need a set of unit vectors that are parallel to these axes, a1, a2, and a3. So these vectors are mutually orthogonal.

And in fact, it’s these vectors that are more important than the axes. In fact, I’m gonna get rid of those axes and just keep the unit vectors, a1, a2, and a3. You have to remember that these vectors are attached to the rigid body as is the origin O.

Likewise for frame B, we have another set of unit vectors, b1, b2,and b3. And an origin P that’s attached to the rigid body.

So, we have two sets of basis vectors. Each set of basis vectors consists of mutually orthogonal unit vectors. The as are attached to the frame A, the bs are attached to the frame B.

Now I have a different set of components, q1 prime, q2 prime and q3 prime. Clearly, they are different from q1, q2, and q3 because b1, b2, and b3 are different from a1, a2, and a3. And yet, we wanna find a relationship between q1, q2, and q3 on one side and q1 prime, q2 prime, and q3 prime on the other side. This relationship is called a rigid body transformation because you’re talking about the same point. And looking at it from the vantage point of two different frames, each frame attached to a different rigid body.

So how do we relate q1, q2, and q3 to q1 prime, q2 prime, and q3 prime? Well, you can write down the vectors pictorially, and you see that immediately that picture suggests that you can use the triangle law of vector addition. The vector from O to Q is simply the sum of the vector from O to P, and the vector from P to Q. I can write this down in terms of components, as we’ve discussed before.

So now, I have a vector equation.I could even try to write this equation in terms of 3 by 1 vectors.

But you cannot simply add these 3 by 1 vectors.

Instead, you should take the vector of components q1 prime, q2 prime, and q3 prime, pre-multiplied by suitable transformation matrix, so that the resulting set of components is along a1, a2, and a3. Well, this transformation is essentially due to a rotation. And the matrix in front is a 3 by 3 rotation matrix. It’s denoted by the boldface symbol R with subscripts A and B. Suggesting that you are transforming components from frame B into frame A.

How do you write the components of a rotation matrix? Well, it’s a 3 by 3 matrix, and if you look carefully at the vector equation and the equation with 3 by 1 vectors, you can see that the rotation matrix is simply a collection of dot products or scalar products. You’re taking all possible combinations of the basis vectors, b1, b2, and b3, with the basis vectors a1, a2, and a3. In fact, if you look at the first row, it is simply the components of the basis vector b1 written in frame A.

Now we’re gonna collapse everything into a single matrix, the homogenous transformation matrix. Again, the same equation that essentially describes the triangle law of vector addition in terms of components, components written in terms of a1, a2, and a3. Let’s use homogeneous coordinates where we append the regular xyz coordinates by the number 1 as the fourth element. So this set of four numbers essentially give you a vector which is a representation of the position vector, but in projector coordinates. To relate these two sets of 4 by 1 vectors, all you need is a homogenous transformation matrix that includes elements of the rotation matrix that we’ve just described and the translation from O to P given by the components p1, p2, and p3. The last row, which consists of 0s and 1s, is simply inserted to make sure that the matrix multiplication reflects the triangle law of vector addition.

Well, this 4 by 4 matrix, we’re gonna denote by the boldface symbol T with subscripts A and B. And again, the subscripts denote the fact that you’re transforming position vectors from the second letter, B, to the first letter, A. This is our 4 by 4 homogeneous transformation matrix.

For an example see: Transformation example in Matlab

Written by: Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

UML Advanced

  1. SuperClass
  1. Fuente. KULeuvenX: UMLx UML Class Diagrams for Software Engineering (Copia Textual – Literature Review).
    1. Superclass/Subclass/inheritance
    2. Generalisation sets
    3. Constraints on generalisation/specialisation
    4. Reading a diagram with Inheritance (Inherited Associations)
    5. AssociationClass

Superclass

In this presentation we’ll explain the concept of generalization and specialization. This concept is actually a UML association construct. It relates to inheritance, fundamental concept of object oriented programming. This concept states that a class can inherit attributes and operations from a parent class.

In this example We have the general concept of account and two more specific concepts of checking account and saving account that inherit the characteristics of the more general concept of account. The more general concept is called generalization, superclass or supertype and the more specific concept is called the specialization, subclass or subtype. Graphically, the generalization/specialization association is drawn as a line connecting the super type to the subtype, and which is adorned with a triangle pointing towards the super type.

The principle of inheritance states that a subtype inherits the features of the super type. So, in this case, the superclass ‘account’, has defined two attributes: ‘IBAN number’ and ‘balance’. Those attributes will be inherited by checking account. So, also checking account will have an IBAN number and a balance. In addition, the checking account can extend what it inherited from account with its own attributes. And, in this case, checking account defines an additional attribute: ‘credit card’. Likewise, the savings account inherits from account that it has an IBAN number and a balance. But, it extends this with four attributes relating to a savings plan…Here, we graphically represent how a generalization/specialization is similar to a superset/subset relation.

Generalization sets.

Sometimes it is difficult to decide how to define the specialisations of a super type because different partitionings are possible. Take the example of vehicles. If you look at the transportation medium, you would have a partition like this:

This examples illustrates how in certain cases a single concept can be partitioned in two different ways. In UML, the concept of generalization set provides a way to group Specializations into orthogonal dimensions. Each group is represented by a generalization set. There are three different notations to represent generalisation sets.

First, by putting a name next to the Generalization relationship lines, that name designates a GeneralizationSet to which the Specialization belongs.

Second, two or more lines can be drawn to the same arrowhead and labelled by a single

generalization set name. This is called the “shared target” style.

With either of these two notations, if there are no labels on the Generalization arrows it cannot be determined from the diagram whether there are any generalization sets in the model.

Finally, a generalization set may be designated by drawing a dashed line across those lines with separate arrowheads that are meant to be part of the same set. Here, the generalization set is labelled with a single name, instead of each line labelled.

Constraints on Generalization/Specialization.

The concept of generalization/specialization comes with constraints and there are two types of constraints to consider. The first is whether the specialization is complete or incomplete. The question to ask is whether the subclasses cover all the elements of the superclass. Let’s consider an example where the superclass are the pet animals. That is the general concept. And you have three subtypes or specialized concepts namely cats, dogs and horses. The question to ask is: are there other pet animals than cats, dogs and horses? If yes, then the specialization of the subclasses is an incomplete specialization of the general concept. If there are no other pet animals than cats, dogs and horses, then the specialization is complete.

The other constraint to consider is whether or not subclasses are disjoint or overlapping. The question to ask here is: are there overlapping subclasses? For our example: Are there animals that can be dog and cat at the same time? Or cat and horse at the same time? Or dog and horse at the same time? If that’s not the case, then your classes are disjoint. If it is possible that an animal is a cat and a dog at the same time or a cat and a horse or a dog and a horse at the same time, then you have overlapping subclasses. If you don’t specify anything then by default it is assumed that your subclasses are disjoint.

The way to write these constraints down is simply by including the words that indicate the correct constraint between brackets next to the triangle.

Reading a diagram with inheritance (Inherited associations).

The general rule is that you have to read inheritance as an OR. So if you read the association between customer and account in this direction, the way to read the diagram is as follows.

A customer can have zero to many accounts and these accounts are either checking accounts or savings account because the specialization is complete and disjoint.

In the other direction, from account to customer, the way to read the diagram is that each account, be it the checking account or savings account, must have exactly one customer as an owner. In other words, checking account and savings account inherit from account that they belong to exactly one owner.

And here’s another example. Reading from student to course means that a student can follow zero to many courses and that these courses are advanced or intermediate or both, or just courses. Because inheritance is overlapping and incomplete.

In the other direction, reading from course to student we can see that each course is followed by zero to many students. And, because of the inheritance relationship, the advanced course and intermediate course inherit from course the fact that they are followed by zero to many students. So each course, advanced or intermediate, or just course is followed by zero to many students.

In the case of multiple inheritance trees in a single diagram, extra care is required. Consider this example. The association between Flight and Airplane seems to read as a general rule “Each flight has to be done with an airplane, and each Airplane can serve for zero to many flights.” While this seems a logical interpretation, the actual meaning is different.

The blue part of the model should be read as “A Flight, which could be either a cargo flight or a passenger flight” Similarly, the orange part of the model should be read as “An airplane, which could either be a passenger airplane or a cargo airplane.” In combination with the association, the true meaning of the model is: A flight of any kind, be it cargo or passenger flight, is always done with one airplane of any kind, be it a passenger or a cargo plane. So if you want to capture that passenger flights can only be done with passenger planes, and that cargo flights can only be done with cargo planes, then you need to model this at the level of the specialisations. And obviously, the association at the level of the super type then needs to be removed.

And what if cargo flights can be done with any kind of planes? Then the association connects “Cargo Flight” to the superclass “Airplane” rather than to the subclass. And the model looks like this.

AssociationClass

Let’s take a look again at the example of projects, products and suppliers. Suppose that prior to buying a product for a project, you need to be able to look up the different prices different suppliers ask for a product. So, next to keeping track of which product has been sourced from which supplier for a project, you also want to know which supplier offers which product.

So, where would you keep the price attribute? Would you model this as an attribute of supplier? Definitively not. Is it an attribute of product? Since each supplier has its own price for a given product, you can’t model it as an attribute of product either.

The price is rather an attribute of the combination of supplier and product. It’s therefore an attribute of the association between supplier and product. As a result, the association exhibits the characteristics of a class. In UML this is capture by the concept of associationclass.

An association class is both an association and a class at the same time. The association class is therefore named like a Class, and it can have attributes and operations. In this example, a good name for the association class is “ProductOffer”. And next to the price, this association class could also contain other attributes such as shipping conditions, average shipping time, etcetera.

In the example of the projects, products and suppliers, also the other associations may be converted to association classes, depending on required attributes. For example, the association that models which products are required by which projects, may be turned into an association class ProductRequirement capturing the required quantity, the maximum price that should be paid and the deadline by which products should be available.

The use of the concept of association class adds complexity to a model, in the sense that it is an extra symbol one needs to understand. To a large extent, a model using only classes and associations can express the same thing. For example, the product offer can also be modelled as a conventional class, related to a single supplier and a single product.

 

Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Cuenca, Guayaquil)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Machine Learning – Regression

Date: August, 2017, Location: Quito, Pichincha, Ecuador.

Framework

Actividad WBS (Linear Regression – )
Sábado 05, 5:12 am

Este material es una copia textual de (This material is a textual copy of):

Machine Learning

Linear Regression

 

So the first subject that we’re going to be discussing in this course is regression. And particularly, in this lecture, we will be discussing something called linear regression.

So this is the most basic form of regression. And to introduce it, I’ll use a very simple problem, the problem of Old Faithful. So with this problem, what we have is a geyser that’s erupting for a certain amount of time. And then not erupting for a certain amount of time.

And what we want to do is we want to come up with a way to predict when is the next eruption going to be. And so one way that we might do this is to collect some data. So collect pairs of inputs and outputs. Where the input might be how long the geyser erupted for in minutes. And then the output would be after that eruption, how long we had to wait for the next eruption in minutes.

And so what linear regression is going to do is it’s going to take the input. In this case, how long the geyser erupted for. And try to predict the output. How long it’s going to now be silent until the next eruption. So let’s look at the data, at what we have and how we might wanna model this. So here, we clearly see a trend.

So here, we clearly see a trend. In the x axis, we have how long the geyser erupted for. And then in the y axis, we have how long we have to wait for the next eruption.

So now the question is can we meaningfully predict the time between eruptions using only the duration of the last eruption?

So by looking at this data, we might want to come up with some sort of a simplifying function. Where you simply have to take the input, which is how long the geyser erupted for. Perform a function on that. And then the output will be a prediction of how long we think we’re going to have to wait for the next eruption. And by looking at this, the most natural choice is to model this as a linear function.

So this is the most simple regression setting where we want to do linear regression. Where we have an input that we believe is related according to some linear function to the output. The model that we’re going to consider is called linear regression where we have the output which is the waiting time is a function where we have some constant w naught times the last duration of the eruption, how long it erupted for, times a wait w1. And so w naught and w1 are two values that we’re going to now learn from the data. So this is an example of linear regression in this case. Because we are simply learning a line to fit the data.

So how would this translate to higher dimensions, just to give some intuitions? For example, imagine that we have two inputs. And we wanna predict an output based on those two inputs. In this case, we would use the function, also a linear function. Where we say that the output is approximately equal to some offset or bias plus the first input times a wait on the first input plus the second input times a wait on the second input. And so here in this plot, you can see this. Where we have the inputs that are two dimensional. And the output again is one dimensional. And instead of a line in this case, we’re learning a plane through the data.

So let’s look at a more basic definition of the regression problem. So what we have as data are inputs. We’ll call those x that are d dimensional in rd. These inputs have many names. We can call them measurements, covariates, features, independent variables. And I’ll probably switch back and forth between these different names throughout the lectures. And the outputs are the corresponding response or dependent variable y, which is a real value. So this is the data that we’re dealing with. We have inputs, and those can be in rd, and outputs that are real valued. Real valued numbers that we wanna predict.

And the goal of the regression problem is to define a function f that maps an input to an output. So the function f takes x as an input, that’s an rd. And maps that to a value in r, which is in the output space. Such that the output can be reasonably assumed to be approximately equal to the mapping of the input through the function. Along with some parameters or free variables of the model w…And the goal is now to learn those parameters’ given data.

Okay, so let’s look at the simplest linear regression model and a way that we can learn it through least squares. So the model again takes an input xi. Passes it to a function with parameters’ w. And predicts an output yi associated with xi according to this function where we have the waits, w naught. … And then we have a dot product or a element-wise product of the wait wj with the jth dimension of input xi. So xi is an rd. We take the jth dimension of xi. Multiply it by a wait wj. Do this for each dimension and sum those values up. And add the bias to it. And predict the output to be approximately equal to this linear function.

So we’ve defined the model. And we now collect some training data. Meaning we collect pairs of instances of inputs and outputs that we know through measuring them or obtaining them in some way. So we have n pairs, x1 y1, where y1 is the corresponding response for input x1, through xn yn. And now the goal, and this is pervasive throughout machine learning, is to use this data to learn the vector w. Such that we can make predictions or we can approximate outputs according to that function.

So what does it mean to find the vector w? How can we find these values for w that give us this prediction according to this linear function? So in order to know what a good value for the vector w is, we need to define an objective function. And what this does is it basically tells us what are good values for the vector w and what are bad values.

So for least squares, the objective function is the most straightforward one you could think of. It’s the sum of the squared errors. So here we have the output yi from our training dataset. And we subtract our prediction of what yi is according to our linear regression model. That’s the error of our prediction. We then square that value so it’s always a positive number. And then sum up those values to get the total sum of squared errors of our model.

Written by: Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador.

 

Las variables de estado son la herramienta más poderosa de la Ingeniería de Control Moderna, ya que no está limitada a sistemas lineales como sí o está el método hasta ahora visto, La Transformada de Laplace.

Las variables de estado en el caso del sistema masa-resorte-amortiguador de la Figura 8, nos permitirá reescribir un sistema de segundo orden en un sistema de primer orden. El siguiente material fue obtenido del video: State-Space Representation

Figura 8

Seleccionando nuevamente el desplazamiento como la coordenada generalizada, la ecuación de movimiento del sistema es la siguiente:

El objetivo es expresar esta ecuación en una forma equivalente que tiene la siguiente forma:

Aquí el vector es un Vector de Estado, y X1, X2, son variables de estado que sustituyen a la original variable generalizada X y, más importante, a sus derivadas. El describir el sistema en forma de matrix, ofrecerá la enorme ventaja de utilizar el poder de las computadoras para procesar información y ejecutar análisis de datos presentados en forma matricial (Matrix Algebra).

Las ecuaciones encerradas en círculos amarillos muestran como la primera forma de escribir es la forma compacta de escribir las ecuaciones para y.

El primer paso es definir las variables de estado:

Este procedimiento nos permite obtener de inmediato la primera ecuación de estado :

…..por tanto

El segundo paso consiste en forzar al coeficiente que acompaña al orden más alto, el coeficiente líder, a ser igual a la unidad. Para ello, en nuestro caso, se divide la ecuación de movimiento original entre m (y en general, entre el valor que ocupe ese lugar):

En el tercer paso se despeja la derivada de mayor orden:

El cuarto paso consiste en sustituir las derivadas de la variable original por sus ya asignadas variables de estado:

Y así hemos encontrado la segunda ecuación de estado:

….

Y así hemos completado el objetivo. La ecuación de movimiento original puede ser expresado como variables de estado en la siguiente forma:

Written by: Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Transfer Function of a DC Motor

Transfer Function of a DC Motor.

Consider the model presented in Figure 10:

Figure 10. Model for a DC Machine [4]

Let’s determine the Transfer Function of the DC Motor from Figure 10. Since the current-carrying armature is rotating in a magnetic field, its voltage is proportional to its speed. That is the back electromotive force as it was established in equation 7:

Equations 12

Taking the Laplace Transform we get:

Equations 13

The torque developed by the motor is proportional to the armature current, as it was said in Equations 9:

Equations 14

Transforming every impedances of Figure 10 into their Laplace Transform equivalent , we find the voltage equation for the loop around the armature circuit:

Equations 15

Now, we substitute Equations 13 y 14 en 15:

Equations 16

We need Tm in terms of in order to find . That can be get using the equivalent model for mechanical loading on a motor as shown in Figure 11:

Figure 11. Typical equivalent mechanical loading for a DC Machine [4]

Where Jm and Dm are mechanical constant which can be derived from a typical configuration such as:

Figure 12. A DC Motor driving a rotational mechanical load [4]

Considering Figure 12, Jm and Dm are:

Equations 17

Now, from Figure 11 we can find the relationship between Tm and :

Equations 18

Substituting Equations 18 in 16 we get:

Equations 19

In the most cases La is too small compared with Ra, so Equations 19 can be simplified and rearrange as:

Equations 20

Now from Equations 20 we obtain the Transfer Function for a DC Motor as follow:

Equations 21

The electrical constants of the motor Kt y Kb can be found with the following relations:

Equations 22

Where Tstall, Ea y Wno-load, use to be derive from a Graphic Speed Vs Torque such as:

Figure 13. Torque-speed curves with an armature voltage Ea as a parameter [4]

As an example, consider the case of Figure 14:

Figure 14. Torque-speed curves and system example [4]

Hence:

And using the gear ratio N1/N2=1/10:

[4] Control Systems Engineering, Norman Nise

Written by: Larry Francis Obando – TSU

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

DC Motor – Fundamentals

Download in PDF: DC Motor – Fundamentals

DC Motor.

The DC motor is not so used nowadays as it was in the past. For most application, it has been replaced by the solid-state rectifiers. Figure 1 shows an elementary machine equipped with a field winding wound on the stator poles, a rotor coil, and a commutator:

Figure 1. Elementary two-pole DC Machine [1]

The commutator is made up of two semi-circular copper segments mounted on the shaft at the end of the rotor.These segments are insulated from one another as well as from the iron of the rotor. Each terminal of the rotor coil is connected to a copper segment. Stationary carbon brushes ride upon the copper segments whereby the rotor coil is connected to a stationary circuit.

The voltage equations for the field winding and rotor coil are:

Equations 1

The flux linkage is expressed as:

Equations 2

Rf and Ra are the resistances of the field winding and the armature coil. The armature is the term used to refer to the rotor, so both mean the same. The mutual inductance between the field winding and the armature coil is expressed in term of a sinusoidal function of θr as::

Equations 3

where L is a constant. As the rotor revolves, the function of the commutator is to switch the stationary terminals from one terminal of the rotor coil t the other. This commutation occurs at θr=0, Π, 2Π. At the instant of the switch, the brushes are in contact with both copper segments, so the rotor coil is short-circuited.

The way form of the voltage induced in the open-circuit armature coil during constant-speed operation with a constant field winding current may be determined by setting Ia-a´=0 and If=constant. Using the expression from equations 1, 2 and 3, we obtain:

Equations 4

Note that Va-a´=0 at θr=0, Π, 2Π because at this stage is happening the commutation. The next Figure illustrates the commutation:

Figure 2. Commutation of the Elementary DC Machine [1]

Note now that the form of Va makes this configuration an impracticable machine. It could not work effectively as a motor supplied from a voltage source due to the short-circuiting of the armature coil at each commutation.

A more useful machine with 4 pairs of parallel windings is shown in Figure 3, where the rotor is equipped with four a windings and with four A windings, yielding rectified coil voltages.

Figure 3. A DC Machine with parallel windings [1]

Now we have that the form of Va looks like this:

Figure 4. Rectified voltage for a DC Machine with parallel windings [1]

Usually, the number of the rotor coils is more than four reducing by this way the harmonic content of the open-circuit armature voltage Va. In this case, the rotor coil may be approximated as a uniformly distributed winding. So, the rotor winding is considered as current sheets that are fixed in space due to the action of the commutator and which establish a magnetic axis positioned orthogonal to the magnetic axis of the field winding. This configuration looks as follow:

Figure 5. Idealized DC Machine with uniformly distributed rotor winding [1]

Another look for the DC Machine is presented in Figure 6:

Figure 6. Basic parts of the DC Machine [2]

We can now approximate the equivalent circuit for the idealized DC Machine as:

Figure 7. Equivalent circuit for an Idealized DC Machine [1]

From here, we can derive the field and armature voltages which in matrix form look like this:

Equations 5

LFF and LAA self-inductances of the field and armature windings respectively; p is a notation for d/dt; Wr is the rotor speed and LAF the mutual inductance between the field and the armature. The product Wr.LAF.If is called back emf (electromotriz force) Vem. In this last equation IAF.If is frequently substituted by a constant called Kv:

Equations 6

This substitution is far convenient since even in the case of a permanent-magnet dc machine which has not field circuit, the constant field flux produced by the permanent magnet is analogous to a dc machine with a constant Kv.

We obtain through this important expression for describing the dynamic of DC Motor:

Vem=Kv.Wr

Equations 7

The above equation dictates that the voltage across the idealized power transducer is proportional to the angular velocity.

For a DC Machine with a field winding, the electromagnetic torque can be expressed as:

Equations 8

Here again we can substitute LAF.If by the constant Kv. So,

Te=Kv.Ia

Equations 9

The electromagnetic torque Te and the rotor speed are related by:

Equations 10

J is the moment of inertia of the rotor and TL the load torque, positive for the shaft of the rotor. Te acts to turn the rotor in the direction of increasing θr. The constant Bm is a damping coefficient associated with the mechanical rotational system of the machine.

DC Motors in Control System

The variables and parameters that matter in most of the control system designs are resumed in the following table:

Figure 8. Variables and Parameters for a DC Machine [3]

The mode commonly used to represent dc motors in control system literature is as follow:

Figure 9. Model for a DC Machine [3]

A variant is presented in Figure 10:

Figure 10. Model for a DC Machine [4]

With Figure 9 as a reference, the cause and effect equations for the DC Motor are:

Equations 11

According to Equations 11, a Block Diagram for a DC motor should be like this:

Figure 11. Model for a DC Machine [3]

Basic Types of DC Machines.

  1. Separate Winding Excitation (Figure 7)
  2. Shunt-Connected dc Machine

Figure 12. Shunt-Connected DC Machine [1]

  1. Series-Connected dc Machine

Figure 13. Series-Connected DC Machine [1]

  1. Compound-Connected dc Machine

Figure 14. Compound-Connected DC Machine [1]

Figure 15. Other notations for DC Machine Types [2]

Transfer Function of a DC Motor.

Consider the model presented in Figure 10:

                                          Figure 10. Model for a DC Machine [4]

Let’s determine the Transfer Function of the DC Motor from Figure 10. Since the current-carrying armature is rotating in a magnetic field, its voltage is proportional to its speed. That is the back electromotive force as it was established in equation 7:

Equations 12

Taking the Laplace Transform we get:

Equations 13

The torque developed by the motor is proportional to the armature current, as it was said in Equations 9:

Equations 14

Transforming every impedances of Figure 10 into their Laplace Transform equivalent , we find the voltage equation for the loop around the armature circuit:

Equations 15

Now, we substitute Equations 13 y 14 en 15:

Equations 16

We need Tm in terms of in order to find . That can be get using the equivalent model for mechanical loading on a motor as shown in Figure 11:

                        Figure 11. Typical equivalent mechanical loading for a DC Machine [4]

Where Jm and Dm are mechanical constant which can be derived from a typical configuration such as:

                        Figure 12. A DC Motor driving a rotational mechanical load [4]

Considering Figure 12, Jm and Dm are:

Equations 17

Now, from Figure 11 we can find the relationship between Tm and :

Equations 18

Substituting Equations 18 in 16 we get:

Equations 19

In the most cases La is too small compared with Ra, so Equations 19 can be simplified and rearrange as:

Equations 20

Now from Equations 20 we obtain the Transfer Function for a DC Motor as follow:

Equations 21

The electrical constants of the motor Kt y Kb can be found with the following relations:

Equations 22

Where Tstall, Ea y Wno-load, use to be derive from a Graphic Speed Vs Torque such as:

        Figure 13. Torque-speed curves with an armature voltage Ea as a parameter [4]

As an example, consider the case of Figure 14:

                   Figure 14. Torque-speed curves and system example [4]

Hence:

And using the gear ratio N1/N2=1/10:

Bibliography

[1] Analysis of Electric Machinery and Drive Systems

[2] Dynamic simulation of Electric Machinery using MATLAB

[3] Sistemas de Control Automatico, Benjamin Kuo

[4] Control Systems Engineering, Norman Nise

Written by: Larry Francis Obando – TSU

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Máquina Sincrónica – Fundamentos

Descargar en PDF: Máquina Sincrónica – Fundamentos

  1. MÁQUINAS SINCRÓNICAS.

Se denominan máquinas de corriente alterna o CA a los generadores que transforman energía mecánica en energía eléctrica de CA y a los motores que convierten energía eléctrica de CA en energía mecánica. Existen dos tipos de máquinas de CA: las máquinas sincrónicas y las máquinas de inducción, también conocidas como máquinas asincrónicas [1]. Las máquinas eléctricas rotativas convencionales presentan las siguientes características comunes [2]:

  • Poseen un eje mecánico por medio del cual se realiza el intercambio de energía;
  • Tienen una pieza estática o inmóvil denominada estator;
  • Tienen una pieza móvil llamada rotor, en el caso de las máquinas cilíndricas;
  • Por lo general, tienen forma cilíndrica.

La Figura 1 permite visualizar la configuración cilíndrica general de una máquina de CA, vista frontal:

Figura 1: Configuración cilíndrica de los conductores de una Máquina de CA [2].

En las máquinas sincrónicas, la corriente del campo magnético es suministrada por una fuente de potencia CA externa, mientras que en el caso de la máquina de inducción la corriente de campo magnético se suministra a sus devanados de campo por medio de inducción magnética [1]. La bobina del rotor de la máquina sincrónica se excita mediante la inyección de una corriente continua, mientras que por las bobinas del estator circula una corriente alterna. Son estas corrientes alternas las que producen un campo magnético rotatorio que gira en el entrehierro de la máquina con la misma frecuencia angular de las corrientes de armadura [2].

La Figura 2 muestra las partes de una máquina sincrónica real, con rotor de polos salientes, construida en una central de generación eléctrica:

Figura 2: Estator y Rotor de Polos Salientes de una Máquina Sincrónica [2].

La rapidez de una máquina sincrónica bajo condiciones de estado estacionario, es proporcional a la frecuencia de la corriente que circula en su inducido o armadura. El rotor gira a la misma velocidad que el campo magnético de rotación que produce la corriente del inducido, de allí el término de máquina sincrónica, obteniéndose como consecuencia un par estacionario [3]. Las máquinas sincrónicas son comúnmente utilizadas como generadores en grandes sistemas de potencia tales como turbinas o centrales hidroeléctricas. Por su parte, debido a que la velocidad del rotor es proporcional a la frecuencia de excitación, los motores sincrónicos son utilizados en aplicaciones donde un variador de velocidad constante sea requerido [4]. Los objetivos al modelar una máquina sincrónica pueden dividirse en dos grandes grupos: para lograr una mayor comprensión del complejo comportamiento electro-magnético de la máquina; para la simulación o análisis de sistemas de control.

Haciendo uso de los métodos de elementos finitos o FEMs (Finite Element Methods) es posible obtener una descripción electromagnética bastante precisa de la máquina sincrónica. Sin embargo, dichos métodos presentan los siguientes inconvenientes: el tiempo de cálculo durante la simulación y el gran número de parámetros de la máquina eléctrica. Es por ello que los métodos FEM son más útiles durante la etapa de diseño [4].

Las máquinas sincrónicas vienen en muchos tamaños y formas, desde motores sincrónicos miniaturas de imán permanente hasta las más grandes turbinas que trabajan con vapor para generar electricidad, con capacidad de hasta 1500 MVA. Sin embargo, las máquinas sincrónicas pueden ser de dos tipos [5]: de campo magnético estacionario; de campo magnético rotatorio.

El rotor de la máquina sincrónica puede ser cilíndrico, como se representa en la Figura 3a, o puede tener caras polares proyectadas hacia afuera de su superficie, como se diagrama en la Figura 3.b:

  1. b)

Figura 3: a) Máquina sincrónica de rotor cilíndrico o de polos no salientes; b) Máquina sincrónica con rotor de polos salientes [1].

1.1.1 APLICACIONES DE LAS MÁQUINAS SINCRÓNICAS.

La máquina sincrónica utilizada como generador de CA e impulsada por una turbina para transformar energía mecánica en energía eléctrica, es la principal fuente de generación de potencia eléctrica en el mundo [6].

Los generadores sincrónicos usualmente trabajan juntos o en paralelo, formando parte de sistemas de potencia de grandes dimensiones físicas, como el que se muestra en la Figura 4, los cuales proveen de energía a las industrias, las áreas comerciales y residenciales de las grandes ciudades [7]. Para este tipo de aplicaciones, los generadores sincrónicos son construidos de gran tamaño, con rangos de potencia que van desde decenas hasta cientos de megawatts. Para máquinas de alta velocidad los principales impulsores son turbinas que emplean recursos fósiles o energía nuclear. Las máquinas de baja velocidad por lo general utilizan la energía hidráulica o eólica, la cual mueve enormes turbinas. Los generadores sincrónicos más pequeños son utilizados generalmente para atender sectores privados y sus principales propulsores son los motores diésel o las turbinas de gas.

Figura 4: Aplicaciones de las máquinas sincrónicas. Generación Eléctrica [8]

Por su parte, los motores sincrónicos son fabricados para atender necesidades específicas, según cada aplicación [9]. De acuerdo con sus características constructivas, alto rendimiento operativo y su adaptabilidad a múltiples ambientes de trabajo, los motores sincrónicos son utilizados en prácticamente todos los sectores industriales, entre los que resaltan:

  • Minería: chancadoras, molinos, cintas transportadoras;
  • Siderurgia: laminadoras, ventiladores, bombas y compresores;
  • Papel y celulosa: extrusoras, picadoras, desfibradoras, refinadoras;
  • Saneamiento: bombas;
  • Química y petroquímica: compresores, ventiladores, extractores, bombas;
  • Cemento: chancadoras, molinos, cintas transportadoras;
  • Goma: extrusoras, molinos, mezcladoras;
  • Transmisión de energía: compresores sincrónicos.

Las principales ventajas en el uso de los motores sincrónicos se resumen a continuación [9]:

    • Corrección del factor de potencia: los motores sincrónicos permiten corregir el factor de potencia en la red eléctrica donde se instalan, ofreciendo de esta manera mejor rendimiento y reduciendo los costos de energía;
    • Velocidad constante: tanto en situaciones de sobrecarga como en aquellas donde ocurren oscilaciones de tensión, respetando los límites del conjugado máximo (pull-out);
    • Alta capacidad de torque: proyectado con alta capacidad de carga, cuyas variaciones no menoscaben su capacidad para mantener la velocidad constante;
    • Mayor estabilidad cuando se utiliza junto con convertidores de frecuencia: puede operar en un amplio rango de velocidad a pesar de las variaciones en la carga.
    • Alto rendimiento: mayor eficiencia en la conversión de energía eléctrica en mecánica. El motor sincrónico es proyectado para operar con alto rendimiento, con mayor provecho de energía para gran variedad de carga. PAGE_BREAK: PageBreak
      1. MÁQUINAS DE ROTOR CILÍNDRICO.

En la máquina de rotor cilíndrico de la Figura 3.a la reluctancia del entrehierro es mucho más alta que las reluctancias en el rotor y en el estator. En consecuencia, el vector de densidad de flujo EQUATION: Equation toma el camino más corto a través del entrehierro, por lo que salta perpendicularmente entre el rotor y el estator [1]. Esta densidad de flujo debe variar sinusoidalmente para permitir a la máquina producir un voltaje sinusoidal. A su vez, para que EQUATION: Equation presente una forma sinusoidal, también debe variar sinusoidalmente la intensidad de magnetización EQUATION: Equation a lo largo de la superficie del entrehierro, tal como se muestra en la Figura 5:

Figura 5: a) Rotor cilíndrico son densidad de flujo del entrehierro variando sinusoidalmente; b) Intensidad del campo magnético en función del ángulo EQUATION: Equation del entrehierro; c) Densidad del flujo magnético en función del ángulo EQUATION: Equation del entrehierro [1].

Los rotores cilíndricos se utilizan en máquinas de dos o cuatro polos y muy rara vez en máquinas de seis polos. Por lo general son impulsados por vapor o turbinas de combustión [5].

Durante la construcción de una máquina sincrónica de rotor cilíndrico, tanto los devanados del rotor como del estator son instalados en ranuras y distribuidos alrededor de la periferia de la máquina [5]. La Figura 6 ofrece una corte transversal de una máquina sincrónica de rotor cilíndrico, además de la corriente producida por un par de conductores en comparación con la corriente EQUATION: Equation producida por devanados distribuidos (Stator and Rotor Winding). Se muestra además la ecuación de la fuerza magnetomotriz resultante en función de la corriente producida y el ángulo EQUATION: Equation:

Figura 6: Sección transversal de una máquina sincrónica de rotor cilíndrico. Fuerza magnetomotriz generada por la corriente producida en los devanados distribuidos en el estator y el rotor [5]. PAGE_BREAK: PageBreak

  1. MÁQUINAS DE POLOS SALIENTES.

La onda de la fuerza magnetomotriz de una máquina con entrehierro uniforme, produce un flujo de magnetización que se comporta de manera independiente a la alineación espacial del dicha onda con respecto a los polos del campo. La máquina de polos salientes permite determinar la dirección de magnetización según se prefiera, gracias a que se hace sobresalir los polos del campo. La penetración a lo largo del eje polar es mayor que a lo largo del eje interpolar. A la primera se le llama eje directo del rotor, mientras a la segunda se le llama eje de cuadratura del rotor [3].

Una máquina sincrónica trifásica de un par de polos salientes, con sus devanados de campo y de armadura, se ilustra en la Figura 7, donde además se representan el eje directo y el eje de cuadratura:

Figura 7: Máquina sincrónica de polos salientes [10].

Por definición, el devanado de campo produce un flujo que se orienta a lo largo del eje directo del rotor. Por ello, en un diagrama fasorial la fuerza electromotriz del devanado de campo y su flujo magnético correspondiente EQUATION: Equation se encuentran a lo largo del eje directo del rotor, como se muestra en la Figura 8:

Figura 8: Flujo del entrehierro del eje directo en una máquina sincrónica de polos salientes [3].

En la Figura 8 se observa además el voltaje interno generado EQUATION: Equation, desfasado 90º del flujo EQUATION: Equation, así como la onda de flujo de reacción del inducido EQUATION: Equation. Debido a que el eje de cuadratura también se encuentra a 90º del eje directo, el fasor de voltaje generado EQUATION: Equation recae sobre el eje de cuadratura. Este hecho es clave en el análisis de las máquinas sincrónicas de polos salientes, ya que al ser localizado el voltaje generado EQUATION: Equation localizan de manera automática el eje directo y el eje de cuadratura [3]. Del lado derecho de la Figura 8, se observan las ondas de la densidad de flujo ubicadas en la superficie del inducido, produciendo la corriente de campo y el componente fundamental espacial de rotación síncrono de la fuerza magnetomotriz de reacción del inducido.

Por su parte, la Figura 9 muestra el flujo del entrehierro del eje de cuadratura. Ya que el entrehierro presenta mayor longitud entre los polos y la mayor reluctancia, el flujo de reacción del inducido fundamental espacial al estar a lo largo del eje de cuadratura es menor que el flujo de reacción al estar a lo largo del eje directo.

Figura 9: Flujo del entrehierro de los ejes de cuadratura en una máquina sincrónica de polos salientes [3].

Por tanto, la reactancia de magnetización del eje de cuadratura es menor que la que presenta el eje directo.

Valiéndose de las corrientes y voltajes definidos en las Figuras 8 y 9, es posible ahora realizar el diagrama fasorial para la máquina sincrónica de polos salientes, el cual se presenta en la Figura 10:

Figura 10: Diagrama fasorial de un generador de polos salientes [3].

En la Figura 10 se puede observar que la corriente EQUATION: Equation es la corriente del inducido, mientras que las corrientes EQUATION: Equation e EQUATION: Equation son las corrientes asociadas al eje directo y al eje de cuadratura respectivamente. El componente EQUATION: Equation del eje directo produce un componente del flujo de reacción del inducido fundamental espacial EQUATION: Equation a lo largo del eje directo, mientras que el componente EQUATION: Equation produce un componente del flujo de reacción del inducido fundamental espacial EQUATION: Equation a lo largo del eje de cuadratura [3].

  1. CIRCUITO EQUIVALENTE DE LA MÁQUINA SINCRÓNICA.

Debido a que en un circuito trifásico todas las corrientes y los voltajes son simétricos, los ingenieros trabajan con la representación de una sola línea. Las características básicas de funcionamiento de una máquina sincrónica pueden ser obtenidas mediante el circuito equivalente en estado estable mostrado en la Figura 11:

Figura 11: Circuito equivalente en estado estable de una máquina sincrónica [5].

En la Figura 11, EQUATION: Equation es la reactancia de fuga, mientras que EQUATION: Equation es la reactancia de reacción de armadura, EQUATION: Equation es la resistencia de armadura y EQUATION: Equation es la impedancia de toda la máquina sincrónica. EQUATION: Equation es el voltaje de magnetización.

La Figura 12 muestra el circuito equivalente completo de un generador sincrónico trifásico. En dicha figura, una fuente de potencia de cd suministra potencia al circuito de campo del rotor, el cual se modela por medio de la inductancia y la resistencia en serie de la bobina. Una resistencia ajustable EQUATION: Equation controla e flujo de corriente de campo [1].

Figura 12: Circuito equivalente completo de un generador sincrónico trifásico [1].

El lado derecho de la Figura 12 muestra los modelos de cada fase, cada una de las cuales tienen un voltaje interno generado con su respectiva inductancia en serie EQUATION: Equation y una resistencia es serie EQUATION: Equation. Las corrientes y voltajes de cada rama están desfasadas 90º.

PAGE_BREAK: PageBreak

  1. DETERMINACIÓN DE LOS PARÁMETROS DE LA MÁQUINA SINCRÓNICA.

Para realizar el estudio de la máquina sincrónica y conocer su comportamiento bajo diversas condiciones de operación, es necesario contar con el modelo matemático de la misma el cual se desarrolla en función de sus parámetros tales como las reactancias del eje directo y del eje de cuadratura en el caso de la máquina de polos salientes, la constante de inercia, el factor de amortiguamiento [11].

Cuando estos parámetros son desconocidos se debe recurrir a metodologías reconocidas por estar avaladas por institutos que poseen gran reconocimiento en la comunidad científica, tal como las normas estándar 115 IEEE (Institute of Electrical and Electronics Engineers) para la determinación de los parámetros de las máquinas sincrónicas.

Estos métodos, como la prueba al vacío, la prueba de factor de potencia cero, el ensayo de respuesta en frecuencia, se realizan bajo condiciones de operación estática, por lo que sus resultados son relativos ya que pueden cambiar cuando suceden cambios en el punto de operación de la máquina cuando está en servicio. Otra desventaja de la mayoría de estos métodos es que para su aplicación, evidentemente se debe interrumpir el servicio que presta la máquina.

La Guía de la IEEE consta de instrucciones para dirigir las pruebas más generales y prácticas para determinar las características de desempeño de las máquinas sincrónicas [12].

1.5.1 ENSAYO DE SATURACIÓN EN VACÍO.

La Figura 13 muestra un generador sincrónico de dos polos operando sin carga, impulsado por velocidad constante [13]. Los conductores del estator trifásico se conectan a los terminales A, B, C y N, mientras que una corriente de excitación variable EQUATION: Equation produce el flujo en el entrehierro:

Figura 13: Generador sincrónico de dos polos operando sin carga [13].

Se incrementa gradualmente la corriente de excitación mientras se observa el voltaje de CA entre una de las terminales, por ejemplo la terminal A, y el neutro. Se puede observar que para bajos valores de la corriente de excitación EQUATION: Equation dicho voltaje se incrementa en proporción directa con la corriente.

Sin embargo, para valores mayores de EQUATION: Equation, el voltaje se eleva con menor pendiente porque el entrehierro comienza a saturarse. De esta manera se obtiene la curva de saturación sin carga del generador sincrónico, que se ilustra en la Figura 14:

Figura 14: Curva de saturación sin carga para generador trifásico de 36 MVA, 21 KV [13].PAGE_BREAK: PageBreakLa prueba de saturación en vacío presenta algunas ventajas entre las cuales se encuentran [12]:

  • Facilidad de implementación;
  • No ocasiona daños al sistema debido a una energización inicial segura para el generador.

1.5.2 ENSAYO DE CORTOCIRCUITO.

Para esta prueba se iguala a cero la corriente de campo y se hace cortocircuito en las terminales del generador por medio de un conjunto de amperímetros [1]. La Figura 15 muestra el circuito equivalente de un generador sincrónico durante la prueba del cortocircuito:

Figura 15: Circuito equivalente de un generador sincrónico durante la prueba del cortocircuito [1].

Se procede a medir la corriente en el inducido EQUATION: Equation o la corriente de línea EQUATION: Equation mientras se incrementa la corriente de campo. La Figura 16 muestra la forma de la curva (una recta) obtenida para esta prueba.

Figura 16: Característica de cortocircuito de un generador sincrónico [1].

Con los ensayos de saturación en vacío y la prueba de cortocircuito es posible obtener la reactancia sincrónica saturada de eje directo EQUATION: Equation y la reactancia sincrónica no saturada de eje directo EQUATION: Equation mediante las siguientes ecuaciones [11].

Para la reactancia sincrónica saturada de eje directo EQUATION: Equation se toma el voltaje nominal EQUATION: Equation de armadura de la curva característica de vacío para una corriente de campo EQUATION: Equation y la corriente de armadura EQUATION: Equation de la curva característica de cortocircuito para la misma corriente de campo EQUATION: Equation, según se procede en la Figura 17:

Figura 17: Curva característica de vacío y cortocircuito [11].

La reactancia sincrónica saturada de eje directo EQUATION: Equation se determina mediante la siguiente ecuación:

EQUATION: Equation (1)

EQUATION: EquationVoltaje nominal de armadura de la curva característica de vacío

EQUATION: EquationCorriente de armadura de la curva característica de cortocircuito

Por su parte, para la reactancia sincrónica no saturada de eje directo EQUATION: Equation se parte de la característica de saturación en el vacío y de la característica en cortocircuito, tomando el valor de la corriente de campo EQUATION: Equation correspondiente a la corriente nominal de armadura EQUATION: Equation de la curva de cortocircuito y la corriente de campo EQUATION: Equation correspondiente al voltaje nominal EQUATION: Equation de la curva de vacío.

De esta manera EQUATION: Equation se obtiene mediante la siguiente fórmula:

EQUATION: Equation (2)

EQUATION: EquationCorriente de campo correspondiente al voltaje nominal EQUATION: Equation de la curva de vacío

EQUATION: EquationCorriente de campo correspondiente a la corriente nominal de armadura EQUATION: Equation de la curva de cortocircuito.

1.5.3 PRUEBA DE FACTOR DE POTENCIA CERO.

Operando la máquina como generador, se alimenta una carga inductiva variable a corriente de armadura nominal EQUATION: Equation a una velocidad sincrónica de giro EQUATION: Equation [11]. La Figura 18 ilustra la conexión apropiada para la realización de esta prueba:

Figura 18: Conexión para el ensayo de factor de potencia cero [11].

Se cortocircuitan los terminales de estator, para luego reemplazar el cortocircuito de los terminales de estator por una carga inductiva variable para conservar una diferencia de 90º de fase entre la corriente EQUATION: Equation y el voltaje EQUATION: Equation. Finalmente se realiza la medición de EQUATION: Equation variando el reóstato y manteniendo el valor de EQUATION: Equation.

Se obtiene entonces la curva característica de la prueba de factor de potencia cero para un generador sincrónico, tal como se muestra en la Figura 19:

Figura 19: Curva de factor de potencia cero para un generador sincrónico [11].

Se utiliza la curva de vacío, la curva de cortocircuito y la curva de factor de potencia cero para determinar la reactancia de Potier, procedimiento que hace uso de la interposición mostrada en la Figura 20:

Figura 20: Curvas de vacío, cortocircuito y factor de potencia [11].

El triángulo de Potier se corresponde con los puntos b-c-d de la Figura 20. Luego, mediante el cálculo de la distancia vertical entre los puntos b y c, tomando en cuenta la corriente de armadura nominal EQUATION: Equation, se obtiene la reactancia de Potier EQUATION: Equationde acuerdo con la siguiente ecuación:

EQUATION: Equation (3)

EQUATION: Equation Distancia vertical entre los puntos b y c;

EQUATION: Equation Corriente de armadura nominal

1.5.4 ENSAYO BAJO CARGA.

El comportamiento de un generador sincrónico depende en gran parte del tipo de carga que se incorpora al circuito de alimentación [13]. A pesar de su gran variedad, todas las cargas se pueden agrupar en dos tipos de categorías:

  • Cargas aisladas alimentadas por un solo generador;
  • El bus infinito o barra conductora infinita.

Si se considera el primer caso, cargas aisladas, esta prueba representa una alternativa para determinar la reactancia del eje en cuadratura EQUATION: Equation de la máquina sincrónica.

Las variables necesarias de medir son las siguientes: corriente de armadura EQUATION: Equation, voltaje de armadura EQUATION: Equation, ángulo de factor de potencia EQUATION: Equation y ángulo de par EQUATION: Equation.

Luego, para hallar la reactancia del eje en cuadratura EQUATION: Equation se aplica la siguiente fórmula:

EQUATION: Equation (4)

1.5.5 ENSAYO DE RESPUESTA EN FRECUENCIA.

Los datos que se obtienen del ensayo de respuesta en frecuencia describen la respuesta de flujo de la máquina sincrónica a la corriente de estator y cambios en los voltajes de campo tanto en el eje directo como en el eje de cuadratura [14]. Actualmente las máquinas sincrónicas son modeladas haciendo uso de circuitos equivalentes que se basan es estos dos ejes.

Entre las ventajas de este método están las siguientes:

  • Se puede aplicar in situ, mientras la máquina está operando en la fábrica;
  • La máquina estudiada corre poco riesgo;
  • Ofrece datos sobre la actividad tanto del eje directo como del eje de cuadratura.

El análisis de la respuesta en frecuencia de la máquina sincrónica ofrece datos sobre la impedancia operacional del eje directo EQUATION: Equation y del eje de cuadratura EQUATION: Equation, así como la función de transferencia de la máquina, mediante la descripción de las relaciones entre los voltajes y corrientes en función de la frecuencia. También se determinan las constantes de tiempo transitoria y sub transitoria de la máquina.

El procedimiento, tal como es descrito en la Guía 115 IEEE, se muestra en la Figura 21, donde el rotor es colocado para posicionar el rotor con el eje directo. Lo mismo se realiza luego con el eje de cuadratura.

Figura 21: Configuración para el ensayo de respuesta en frecuencia para el eje directo de la máquina sincrónica, de acuerdo al IEEE standard 115 A [14].

Se miden el voltaje y la corriente de armadura (EQUATION: Equation), el voltaje y la corriente de campo (EQUATION: Equation), de eje directo (EQUATION: Equation) y de eje de cuadratura (EQUATION: Equation). La magnitud de las impedancias operacionales EQUATION: Equation y EQUATION: Equation se miden para un rango determinado de frecuencias, aplicando las siguientes fórmulas:

EQUATION: Equation EQUATION: Equation (5)

EQUATION: Equation (6)

Mientras que la ganancia de voltaje EQUATION: Equation se evalúa mediante:

EQUATION: Equation EQUATION: Equation (7)

La Figura 22 muestra el resultado de analizar EQUATION: Equation mediante simulación computarizada, para un rango de frecuencia de operación de la máquina que va desde mili Hertz a kilo Hertz:

Figura 22: Determinación de magnitud y fase de la impedancia operacional del eje directo EQUATION: Equation mediante ensayo de respuesta en frecuencia [14]

  1. SIMULACIÓN DE UNA MÁQUINA SINCRÓNICA CON MATLAB.

Es bien conocido que un modelo matemático para las máquinas sincrónicas puede estar compuesto por ecuaciones diferenciales de primer, segundo, tercer y hasta séptimo orden. Evidentemente, las representaciones con ecuaciones de séptimo orden son las más complejas, pero describen el comportamiento de las máquinas sincrónicas de una manera más exacta [15]. Para facilitar el análisis de las máquinas sincrónicas mediante simulación computarizada, Matlab ofrece una librería en su sección SimPowerSistems, que ofrece distintos modelos de máquinas no sólo sincrónicas sino asincrónicas, motores DC y transformadores. La librería de SimPowerSistems permite modelar máquinas sincrónicas de polos salientes o de rotor cilíndrico, cuyo bloque general está ilustrado en la Figura 23:

Figura 23: Bloque fundamental de una máquina sincrónica en Matlab/Simulink [16].

El bloque de la Figura 22 puede operar como generador o como motor. El modelo está basado en una representación matemática de ecuaciones de estado de sexto orden, que incluye un sistema mecánico y un sistema eléctrico. Mediante el diagrama de bloques de la Figura 24 se ilustra la parte mecánica:

Figura 24: Diagrama de bloques del sistema mecánico de una máquina sincrónica en Matlab/Simulink [16].

EQUATION: Equation Variación de velocidad angular respecto a la velocidad de operación;

EQUATION: Equation Constante de inercia;

EQUATION: Equation Torque mecánico;

EQUATION: Equation Torque electromecánico;

EQUATION: Equation Factor de amortiguamiento;

EQUATION: Equation Velocidad mecánica el rotor en función del tiempo

EQUATION: Equation Velocidad de operación.

Mientras, el sistema eléctrico implícito en modelo de la Figura 23 es señalado en la Figura 25, e inmediatamente se especifican los parámetros solicitados por el modelo:

Figura 25: Diagrama del sistema eléctrico de máquina sincrónica en Matlab/Simulink [16].

Los parámetros de estator solicitados por el modelo son:

EQUATION: Equation Resistencia de estator por fase;

EQUATION: Equation Inductancia de estator;

EQUATION: Equation Inductancia de magnetización del eje directo vista desde el estator;

EQUATION: Equation Inductancia de magnetización del eje de cuadratura vista desde el estator.

Los parámetros de campo solicitados por el modelo son:

EQUATION: Equation Resistencia de campo;

EQUATION: Equation Inductancia de campo.

Otros parámetros solicitados son:

EQUATION: Equation Potencia nominal;

EQUATION: Equation Voltaje nominal;

EQUATION: Equation Frecuencia nominal;

EQUATION: Equation Corriente de campo nominal.

Los parámetros pueden ser configurados en la caja de diálogo (Dialog Box) cuyo ejemplo se ofrece en la Figura 26 con unidades del Sistema Internacional (SI), provisto por el sistema cuando se está diseñando en Simulink:

Figura 26: Ventana de diálogo para configurar los parámetros de la máquina sincrónica en Matlab/Simulink [16]

PAGE_BREAK: PageBreak

  1. ESTIMACIÓN DE PARÁMETROS.

Para ilustrar el método de estimación de parámetros en Matlab/Simulink para una máquina sincrónica, se presenta el ejemplo de la Figura 27:

Figura 27: Ejemplo de máquina sincrónica. Modelo de acelerador de motor [16].

En la Figura 27 se puede observar un acelerador que cumple con la función de controlar el flujo de masa de aire en el colector de admisión de un motor. El cuerpo del acelerador está provisto de una válvula mariposa que se abre cuando la persona que conduce el auto, pisa el pedal del acelerador. Esto permite la entrada de más aire a los cilindros del motor, y por tanto, el motor mismo produce más par. Un motor de corriente controla el ángulo de apertura de la válvula mariposa. También se instala un resorte unido a la válvula para devolverla a su posición inicial cuando se desactiva el motor que controla el ángulo de apertura de la válvula. La rotación de la válvula está limitada a aproximadamente 90 grados. Por lo tanto, si una entrada de mando grande se aplica al motor, la válvula golpea unos topes duros que impiden que gire más.

El motor se modela como una ganancia de par y una entrada de retardo de tiempo con los parámetros de EQUATION: Equation (ganancia de torque) y EQUATION: Equation (entrada de retardo de tiempo de respuesta del motor). La válvula de mariposa es modelada como un sistema masa-resorte-amortiguador con los parámetros EQUATION: Equation (constante de inercia de la válvula mariposa), EQUATION: Equation (coeficiente de amortiguamiento) y EQUATION: Equation (constante del resorte). Los valores de los parámetros del sistema no se conocen con precisión.

Para realizar una estimación de los parámetros de la simulación a partir de datos medidos y cargados previamente, se hace doble clic en el cuadro anaranjado de la Figura 27 titulado “Parameter Esimation GUI with Preloaded Data”. Esta aplicación ejecuta tres experimentos:

  • “EstimationData”, para la estimación de los parámetros;
  • “ValidationData1 y ValidationData2”, para validar los datos estimados.

El programa ofrece la ventana de diálogo que se ilustra en la Figura 28:

Figura 28: Ventana de diálogo para la aplicación Estimación de Parámetros [16].

La simulación representada en la Figura 28 muestra que el modelo (línea roja) no coincide con los datos medidos (línea azul) y que debe realizarse una estimación de los parámetros. Para ello, en el menú de la aplicación se hace clic sobre el ícono “Select Parameters”, el cual conduce a la ventana de diálogo de la Figura 29. En esta ventana se seleccionan los parámetros a ser estimados, los cuáles son EQUATION: Equation,EQUATION: Equation, EQUATION: Equation y EQUATION: Equation según el ejemplo:

Figura 29: Ventana de diálogo para selección de parámetros a ser estimados [16]. .

Con los parámetros seleccionados en el proceso anterior, se procede a seleccionar el tipo de experimento, en este caso, la estimación de los parámetros seleccionados, tal como se muestra en la Figura 30:

Figura 30: Ventana de diálogo para seleccionar el experimento [16].

Mientras que la estimación progresa, se abre una nueva ventana de diálogo. El proceso finaliza con una estimación que se aproxima bastante a los datos medidos, tal como se muestra en la Figura 31:

Figura 31: Ventana de diálogo para Estimación de Parámetros. El modelo coincide con los datos medidos [16].

Al observar que ahora el modelo coincide con los datos medidos, se verifica que los valores de los parámetros son los adecuados para la simulación. Estos valores obtenidos para el ejemplo en estudio son presentados en la Figura 32:

Figura 32: Ventana de diálogo para Estimación de Parámetros. El modelo coincide con los datos medidos [16].

  1. MÉTODOS DE OPTIMIZACIÓN DE ESTIMACIÓN DE PARÁMETROS

Existen varios métodos que pueden ser utilizados para acelerar y optimizar el proceso de estimación de los parámetros. Entre ellos se encuentra el método de Mínimos Cuadrados No Lineales, que se usa particularmente cuando el modelo contiene muchos parámetros por estimar. Para seleccionar este método, se utiliza nuevamente el ejemplo de la Figura 27. Dando clic al cuadro anaranjado, se accede a la ventana de herramientas de estimación “Control and Estimation Tools Manager”, y de allí a la ventana “Estimation Options”, tal como se muestra en la Figura 33:

Figura 33: Ventana de “Estimation Options” en Matlab/Simulink [16].

Haciendo clic en “Optimization Options”, se accede a la ventana de la Figura 34:

Figura 34: Ventana de “Optimization Options” en Matlab/Simulink [16]

Se puede observar el ícono donde se puede seleccionar el método de Mínimos Cuadrados No Lineales.

Existen al menos cinco algoritmos de mínimos cuadrados, que se enlistan a continuación:

  • Trust-region-reflective;
  • Levenberg-Marquardt;
  • Lsqlin active-set;
  • Lsqlin interior-point;
  • Lsqnonneg.

El método de minimización (Constrained Minimization) consiste en resolver el problema de encontrar un vector EQUATION: Equation que es un mínimo local para una función escalar EQUATION: Equation, sujeto a la siguiente restricción:

EQUATION: Equation (8)

Tal que una o algunas de las siguientes relaciones se mantengan:

EQUATION: Equation (9)

EQUATION: Equation

EQUATION: Equation

EQUATION: Equation

EQUATION: Equation

PAGE_BREAK: PageBreak

Bibliografía

[1] S. Chapman, Máquinas Eléctricas – 5ta. Edición, México: McGraw Hill, 2012.
[2] J. Aller, «Máquinas Eléctricas Rotativas: Inducción a la Teoría General.,» Equinoccio. Universidad Simón Bolívar, Caracas, 2008.
[3] A. Fitzgerald y C. Kingsley, Máquinas Eléctricas – 6ta. Edición, México: MaGraw Hill, 2004.
[4] A. Barakat, S. Tnani, G. Champenois y E. Mouni, «Analysis of Synchornous Machine modeling for simultation and industrial applications.,» Universidad de Poitiers, Poitiers, 2010.
[5] G. Klempner y I. Kerszenbaum, Principles of Operation of Synchronous Machines, in Handbook of Large Turbo-Generator Operation and Maintenance, Hoboken: John Wiley & Sons, 2008.
[6] J. Grainger y W. Stevenson, Análisis de Sistemas de Potencia, México: MaGraw Hill, 1996.
[7] T.-F. Chan, «Synchronous Machine,» Electrical Engineering, vol. 3, 2007.
[8] ABB, «Synchrounous Motors. High Performance in all applications.,» ABB – Motors&Generators, 2011.
[9] WEG, «Motores Sincrónicos,» Grupo WEG – Unidad Energía, Jaraguá do Sul, 2015.
[10] Wikispaces, «Wikispace,» 2012. [En línea]. Available: https://referencias111.wikispaces.com/file/view/Capitulo3.pdf.
[11] A. Perez y Y. Romero, «Medición indirecta de algunos parámetros de la máquina sincrónica a partir de la medida del ángulo del par.,» Universidad Tecnológica de Pereira, Pereira, 2007.
[12] IEEE, «IEEE Guide: Test Procedures for Synchronous Machines. (IEEE Std 115),» New York, 2009.
[13] T. Wildi, Máquinas Eléctricas y Sistemas de Potencia – 6ta. Edición, México: Pearson Educación, 2007.
[14] M. Hasni, O. Touhami, R. Ibtiouen, M. Fadel y S. Caux, «Synchronous Machine Parameter Estimation by StandStill Frequency Response Tests.,» Journal of ELECTRICAL ENGINEERING, vol. 59, nº 2, p. pp. 75–80, 2008.
[15] Z. Spoljaric, K. Miklosevic y V. Jerkovic, «Synchronous Generator Modeling Using Matlab.,» University de Osijek, Osijek, 2012.
[16] MATLAB, «MATLAB,» 2016. [En línea]. Available: https://www.mathworks.com.

Escrito por: Larry Francis Obando – TSU

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)