Base de conocimiento

Análisis de sistemas de control, Física Aplicada, Sistemas Mecánicos

Dinámica de un Sistema Masa-Resorte-Amortiguador

Elementos básicos de un sistema mecánico.

Los elementos básicos de todo sistema mecánico son la masa, el resorte y el amortiguador. El estudio del movimiento en sistemas mecánicos se corresponde con el análisis de sistemas dinámicos. En robótica, por ejemplo, la palabra Forward Dynamic se refiere a lo que le sucede a los actuadores cuando le aplicamos a los mismos ciertas fuerzas y torques.

La masa, el resorte, el amortiguador, son actuadores elementales de un sistema mecánico.

En consecuencia, para controlar el robot es necesario conocer muy bien la naturaleza del movimiento de un sistema masa-resorte-amortiguador.

Además, este sistema elemental se presenta en numerosos campos de aplicación, de allí la importancia de su análisis. De nuevo, en robótica, cuando se habla de Inverse Dynamic, se habla sobre el cómo hacer que el robot se mueva de una manera deseada, cuáles fuerzas y torques debemos aplicar sobre los actuadores para que nuestro robot se mueva de una manera particular.

Atención:

Te recomiendo el libro “Sistema masa-resorte-amortiguador, 73 Ejercicios Resueltos”. Lo he escrito luego de agrupar, ordenar y resolver los ejercicios más frecuentes en los libros que se utilizan en las clases universitarias de Ingeniería de Sistemas de Control, Mecánica, Electrónica, Mecatrónica y Electromecánica, entre otras.

Si necesitas adquirir la destreza de solucionar problemas, ésta es una excelente opción para entrenarte y ser eficaz al presentar exámenes, o tener una base sólida para iniciar estas carreras profesionales. Da un vistazo al Índice al final de este artículo. 

Antes de realizar el Análisis Dinámico de nuestro sistema masa-resorte-amortiguador, debemos obtener su modelo matemático. Éste es el primer paso a ejecutar por toda persona que pretenda conocer a profundidad la dinámica de un sistema, especialmente el comportamiento de sus componentes mecánicos.

Iniciaremos nuestro estudio con el modelo de un sistema masa-resorte.

Esto es conveniente por el motivo siguiente. Todos los sistemas mecánicos presentan una naturaleza en su movimiento que le impulsa a oscilar, como cuando un objeto pende de un hilo en el techo y con la mano lo empujamos. O un zapato sobre una plataforma con resortes. Es bueno saber qué función matemática es la que mejor describe ese movimiento.

Pero resulta que las oscilaciones de nuestro ejemplos no son infinitas. Existe una fuerza de roce que amortigua el movimiento. En el caso del objeto que cuelga de un hilo es el aire, un fluido. Por lo que luego de estudiar el caso de un sistema ideal masa-resorte, sin amortiguación, pasaremos a considerar dicha fuerza de roce y añadir a la función ya encontrada un nuevo factor que describa el decaimiento del movimiento.

 

Sistema Masa-Resorte.

 

Fuente: Física. Robert Resnick

La dinámica de un sistema se representa en primer lugar mediante un modelo matemático compuesto por ecuaciones diferenciales. En el caso de el sistema masa-resorte, dicha ecuación es la siguiente:

Esta ecuación se conoce como Ecuación de Movimiento de un Oscilador Armónico Simple. Veamos de donde se deriva.

Si nuestra intención es obtener una fórmula que describa la fuerza que ejerce un resorte en contra del desplazamiento que lo estira o lo encoge, la mejor manera es visualizando la energía potencial que se inyecta al resorte cuando tratamos de estirarlo o encogerlo. La siguiente gráfica describe cómo se comporta esta energía en función del desplazamiento horizontal:

A medida que la masa m de la figura anterior, sujeta al extremo del resorte como se muestra en la Figura 5, se aleja del punto de relajación del resorte x=0  en sentido positivo o negativo, la energía potencial U(x) se acumula y aumenta en forma parabólica, llegando a un valor superior de energía donde U(x)=E, valor que se corresponde con la máxima elongación o compresión del resorte. La ecuación matemática que en la práctica describe mejor esta forma de curva, incorporando una constante k para la propiedad física del material que aumenta o disminuye la inclinación de dicha curva, es la siguiente:

La fuerza se relaciona con la energía potencial de la siguiente manera:

Por lo tanto:

Tiene sentido ver que F(x) es inversamente proporcional al desplazamiento de la masa m. Porque está claro que si estiramos el resorte, o lo encogemos, esta fuerza se opone a dicha acción, intentando devolver al resorte a su posición relajada o natural. Por ello se le llama fuerza de restitución. La ecuación anterior es conocida en la academia como La Ley de Hooke, o ley de la fuerza para resortes. La siguiente es una gráfica representativa de dicha fuerza, en relación con la energía como se ha venido mencionando, sin intervención de fuerzas de roce (amortiguación), por lo que se le conoce como Oscilador Armónico Simple. Es importante recalcar la relación proporcional entre desplazamiento y fuerza, pero con pendiente negativa, y que, en la práctica, es más compleja, no lineal.

Fuente: Física. Robert Resnick

Para una análisis animado del resorte, corto, sencillo pero contundente, recomiendo observar los videos: Potential Energy of a Spring, Restoring Force of a Spring

AMPLITUDE AND PHASE: SECOND ORDER II (Mathlets)

Sistema MRA

Amplitude-and-Phase-2nd-Order-II

He realizado un resumen de los textos originales consultados para analizar las ecuaciones de los elementos que se consideran en este documento: masa, resorte, amortiguador.

Regresando a la Figura 5:

Acudimos a la Segunda Ley de Newton:

Esta ecuación nos dice que la sumatoria vectorial de todas las fuerzas que actúan sobre el cuerpo de masa m, es igual al producto del valor de dicha masa por su aceleración adquirida debido a dichas fuerzas. Considerando que en nuestro sistema resorte-masa, ∑F=-kx, y recordando que la aceleración es la segunda derivada del desplazamiento, aplicando la Segunda Ley de Newton obtenemos la siguiente ecuación:

Arreglando un poco las cosas, obtenemos la ecuación que queríamos obtener desde un principio:

Esta ecuación representa La Dinámica de un Sistema Masa-Resorte ideal.

A parte de la Figura 5, otra forma común de representar este sistema es mediante la configuración siguiente:

Fuente: Dinámica de Sistemas. Katsuhiro Ogata

En este caso debemos considerar la influencia del peso en la sumatoria de fuerzas que actúan sobre el cuerpo de masa m. El peso P está determinado por la ecuación P=m.g, donde g es el valor de la aceleración del cuerpo en caída libre.

Si se jala la masa hacia abajo y luego se suelta, actúa la fuerza de restitución del resorte, provocando una aceleración ÿ en el cuerpo de masa m. Obtenemos la siguiente relación aplicando Newton:

Si implícitamente consideramos la deflexión estática, es decir, si realizamos las medidas a partir del nivel de equilibrio de la masa colgando del resorte sin moverse, entonces podemos obviar y descartar la influencia del peso P en la ecuación. Si hacemos y=x, obtenemos de nuevo la ecuación:

Sistema Masa-Resorte-Amortiguador

 

Si no existiera ninguna fuerza de roce, el oscilador armónico simple oscila infinitamente. En la realidad, la amplitud de la oscilación disminuye gradualmente, un proceso conocido como amortiguación, descrito gráficamente a continuación:

Fuente: Física. Robert Resnick

El desplazamiento de un movimiento oscilatorio se grafica contra el tiempo, y su amplitud se representa mediante una función sinusoidal amortiguada por un factor exponencial decreciente que en la gráfica se manifiesta como una envolvente. La fuerza de fricción Fv que actúa en el Movimiento Armónico Amortiguado es proporcional a la velocidad en la mayoría de los casos de interés científico. Dicha fuerza tiene la forma      Fv = bV, donde b es una constante positiva que depende de las características del fluido que ocasiona la fricción, entre otras cosas. Esta fricción, también conocida como Fricción Viscosa, se representa mediante un diagrama que consiste en un pistón y un cilindro lleno de aceite:

La manera más popular de representar un sistema masa-resorte-amortiguador es mediante una conexión en serie como la siguiente:

Figura 6

Fuente: Física. Robert Resnick

 

Así como la siguiente:

Fuente: Dinámica de Sistemas. Katsuhiro Ogata

En ambos casos se obtiene el mismo resultado al aplicar nuestro método de análisis. Considerando la Figura 6, podemos observar que es la misma configuración mostrada en a Figura 5, pero agregando el efecto del amortiguador. Aplicando la segunda Ley de Newton a este nuevo sistema, obtenemos la siguiente relación:

Esta ecuación representa La Dinámica de un Sistema Masa-Resorte-Amortiguador.

Es de importancia observar que la ecuación (37) es también una Ecuación Diferencial Ordinaria de orden 2 (Ordinary Differential Equation – ODE) porque sólo involucra las derivadas de una sola variable (en este caso x) hasta la segunda derivadaAdemás, al despejar la ecuación e igualarla a cero, se transforma también en una ODE Lineal Homogénea (Homogeneous Linear ODEla cual posee importantes propiedades que facilitan el cálculo. Más adelante en este mismo documento veremos eso mediante la aplicación de La Transformada de Laplace. 

Transformada de Laplace de un Sistema Masa-Resorte-Amortiguador

Una solución para la ecuación (37) se presenta a continuación:

Fuente: Física. Robert Resnick

La ecuación (38) muestra claramente lo que se había observado con anterioridad. Un ejemplo puede simularse en Matlab mediante el siguiente procedimiento:

Tcontinuo

La forma de la curva del desplazamiento en un sistema masa-resorte-amortiguador está representada por una sinusoide amortiguada por un factor exponencial decreciente. Es importante entender que en el caso anterior no se está aplicando ninguna fuerza al sistema, por lo que el comportamiento de este sistema se puede catalogar como “comportamiento natural” (también llamada respuesta homogénea). Más adelante mostramos el ejemplo de aplicar una fuerza al sistema (un escalón unitario), lo que genera un “comportamiento forzado” que influye el comportamiento final del sistema que será el resultado de sumar ambos comportamientos (natural + forzado). Observación: Cuando se aplica una fuerza al sistema, el lado derecho de la ecuación (37) ya no es igual a cero, y la ecuación deja de ser homogénea.

La solución para la ecuación (37) presentada anteriormente, puede derivarse mediante el método tradicional para resolver ecuaciones diferenciales. Sin embargo, dicho método es poco práctico cuando nos encontramos con sistemas más complicados como el siguiente que en los cuáles además se aplica una fuerza f(t):

Figura 7

Fuente: Control System Engineering. Norman Nise.

Surge entonces la propuesta de un método más práctico para hallar la dinámica de los sistemas y facilitar el posterior análisis de su comportamiento mediante simulación computarizada. La Transformada de Laplace permite alcanzar este objetivo de una manera rápida y rigurosa.

En la ecuación (37) no es fácil despejar x(t), que en ese caso es la función de salida y de interés. Tampoco puede representarse una ecuación diferencial en forma de Diagrama de Bloques que es el lenguaje más utilizado por los ingenieros para modelar sistemas, haciendo de lo complejo un objeto visual más fácil de entender y analizar. Esto conduce al primer objetivo para un método más práctico. El primer paso es separar claramente la función de salida x(t), la función de entrada f(t) y la función del sistema, alcanzando una representación como la siguiente:

r(t)=f(t), c(t)=x(t)

Fuente: Control System Engineering. Norman Nise.

La Transformada de Laplace consiste en cambiar las funciones de interés del dominio del tiempo al dominio de la frecuencia mediante la siguiente ecuación:

Fuente: Control System Engineering. Norman Nise.

La ventaja principal de este cambio radica en que transforma derivadas en sumas y restas, luego, mediante asociaciones, podemos despejar la función de interés aplicando las simples reglas del álgebra. Además, no es necesario aplicar la ecuación (2.1) a todas las funciones f(t) que nos encontremos, cuando se dispone de tablas que de antemano ya nos indican la transformada de funciones que se presentan con gran frecuencia en todos los fenómenos, como las sinusoides (salida del sistema masa, resorte y amortiguador) o la función escalón (entrada que representa un cambio brusco). En el caso de nuestros elementos básicos para un sistema mecánico, es decir: masa, resorte y amortiguador, contamos con la siguiente tabla:

Es decir, aplicamos un diagrama de fuerzas para cada unidad de masa del sistema, sustituimos la expresión de cada fuerza en tiempo por su equivalente en frecuencia (que en la tabla se denomina Impedancia, haciendo analogía entre sistemas mecánicos y sistemas eléctricos) y aplicamos la propiedad de superposición (cada movimiento se estudia por separado y luego se suma el resultado).

La Figura 2.15 muestra la Función de Transferencia para un sistema masa-resorte-amortiguador cuya dinámica se describe mediante una sola ecuación diferencial:

null

null

El sistema de la Figura 7 permite describir un método general bastante práctico para encontrar la función de transferencia de sistemas con varias ecuaciones diferenciales. Primero se aplica el diagrama de fuerzas a cada unidad de masa:

La Transformada de Laplace llama a la función del sistema Función de Transferencia, cuya definición depende de cual es la función de entrada y cual la salida. Por ejemplo, para la Figura 7 nos interesa conocer la Función de Transferencia G(s)=X2(s)/F(s).

Arreglando en forma matricial las ecuaciones del movimiento obtenemos lo siguiente:

Las ecuaciones (2.118a) y (2.118b) muestran un patrón que siempre se cumple y se puede aplicar para cualquier sistema masa-resorte-amortiguador:

La consecuencia inmediata del método anterior es que facilita enormemente obtener las ecuaciones del movimiento para un sistema masa-resorte-amortiguador, al contrario de lo que sucede con las ecuaciones diferenciales. Además, podemos llegar rápidamente a la solución exigida. En el caso de nuestro ejemplo:

donde

que son resultados que se obtienen aplicando las reglas del Algebra Lineal, lo que concede un gran poder computacional al método de Transformada de Laplace.

Ejemplos de aplicación

Ejemplo 1.

Ejercicio B318, Modern_Control_Engineering, Ogata 4t p 149 (162),

null

null

null

Respuesta completa en el siguiente link: Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador

Ejemplo 2.

  1. Control Systems Engineering, Nise, p 101

Respuesta completa en el siguiente link: Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador

Caso Rotacional

Hasta ahora se ha considerado solamente el caso traslacional. En el caso de que el desplazamiento sea rotacional, la siguiente tabla resume la aplicación de la transformada de Laplace en ese caso:

Para ilustrar su uso consideramos el siguiente ejemplo:

Las siguientes figuras ilustran la manera cómo realizar el diagrama de fuerzas para este caso:

De esta manera, el resultado se obtiene a continuación:

Siendo:

Observamos que de nuevo se cumple que:

Respuesta de un Sistema Masa-Resorte-Amortiguador con Condiciones Iniciales

La técnica discutida hasta ahora, la aplicación de la Transformada de Laplace para obtener la función de transferencia, ha implicado condiciones iniciales iguales a cero en el sistema. Es por ello que muchos problemas inician con el anuncio de “suponga que el sistema parte del reposo”, o, “suponga condiciones iniciales iguales a cero”.

En el caso de que las condiciones iniciales de un sistema Masa-Resorte-Amortiguador no sean cero, la aplicación de la transformada de Laplace tiene una variante que hace poco factible encontrar la función de transferencia del sistema. En cambio, podemos obtener una expresión para la salida X(s) tomando en cuenta dichas condiciones iniciales, para luego evaluar un sistema paralelo cuyo comportamiento sea equivalente al sistema que nos interesa. Veamos.

Consideramos el sistema de la Figura 5-30, con m=1 Kg; b= 3 N-s/m; k=2 N/m:

null

Si las condiciones iniciales no son iguales a cero, debemos obtener primero la ecuación diferencial del este sistema, la cual es:

null

Suponemos que en el tiempo t=0 la masa es jalada hacia abajo (sentido positivo) tal que posee las siguientes condiciones iniciales: x(0)=0.1 m; x´=0.05 m/s. Tomando en cuenta condiciones iniciales diferentes de cero, la transformada de Laplace  para x’ es sX(s) – x(0), y para x” es s^2X(s) – sx(0) – x'(0). Por tanto, la transformada de Laplace del sistema anterior es:

null

Despejando X(s) obtenemos:null

Por tanto, la expresión para la salida considerando las condiciones iniciales diferentes de cero es:null

Si aún queremos evaluar el movimiento del sistema mediante una función de transferencia, podemos aplicar una fuerza externa y observar que pasa. Hacemos uso de una de las entradas más comunes para evaluar sistemas: una entrada escalón unitario. Es muy utilizada porque muchos fenómenos se manifiestan de esta manera, cuando la fuerza aparece súbitamente y luego permanece constante.

La ecuación anterior se puede escribir como sigue:null

Por lo tanto el movimiento de la masa m puede ser evaluada como la respuesta a la entrada escalón unitario del siguiente sistema cuya Función de Transferencia G(s) es:

null

Introduzca en el Command Window de Matlab el siguiente código el cual simula el comportamiento del sistema ante una entrada escalón:

> G=tf([0.1 0.35 0],[1 3 2])

>step(G)

> stepinfo(G)

null

RiseTime: 2.5518

Peak: 0.1042

¿Cómo se puede interpretar este resultado? El sistema originalmente comienza su movimiento en x(0)=0.1 m (offset) y viaja a una velocidad de 0.05 m/s. Según la gráfica, el sistema (la masa m) se desplaza (oscila) levemente hasta 0.1042 m (Peak) al ser “empujada” por una fuerza en forma de escalón unitario en sentido positivo, y en 2.5518 segundos (RiseTime) a regresado a la posición 0,0368 m aprox., que se corresponde con el 63.2%  de su trayecto hasta la posición final que es 0 m, es decir, la masa y el sistema en general regresa desde 0.1 metros a su posición de equilibrio.

Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador.

Las variables de estado son la herramienta más poderosa de la Ingeniería de Control Moderna, ya que no está limitada a sistemas lineales como sí o está el método hasta ahora visto, La Transformada de Laplace.

Las variables de estado en el caso del sistema masa-resorte-amortiguador de la Figura 8, nos permitirá reescribir un sistema de segundo orden en un sistema de primer orden. El siguiente material fue obtenido del video: State-Space Representation

                                                                      Figura 8

 

Seleccionando nuevamente el desplazamiento como la coordenada generalizada, la ecuación de movimiento del sistema es la siguiente:

El objetivo es expresar esta ecuación en una forma equivalente que tiene la siguiente forma:

Aquí el vector es un Vector de Estado, y X1, X2, son variables de estado que sustituyen a la original variable generalizada X y, más importante, a sus derivadas. El describir el sistema en forma de matrix, ofrecerá la enorme ventaja de utilizar el poder de las computadoras para procesar información y ejecutar análisis de datos presentados en forma matricial (Matrix Algebra).

Las ecuaciones encerradas en círculos amarillos muestran como la primera forma de escribir es la forma compacta de escribir las ecuaciones para y.

El primer paso es definir las variables de estado:

Este procedimiento nos permite obtener de inmediato la primera ecuación de estado :

…..por tanto

El segundo paso consiste en forzar al coeficiente que acompaña al orden más alto, el coeficiente líder, a ser igual a la unidad. Para ello, en nuestro caso, se divide la ecuación de movimiento original entre m (y en general, entre el valor que ocupe ese lugar):

En el tercer paso se despeja la derivada de mayor orden:

El cuarto paso consiste en sustituir las derivadas de la variable original por sus ya asignadas variables de estado:

Y así hemos encontrado la segunda ecuación de estado:

….

Y así hemos completado el objetivo. La ecuación de movimiento original puede ser expresado como variables de estado en la siguiente forma:

Ejemplo 2 variables de estado:

Supongamos ahora que tenemos el sistema de la Figura 2.15, para el cual ya habíamos encontrado su Función de Transferencia (ver: Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador):

Debemos encontrar para este sistema su representación en variables de estado.

Para ver todo el resultado ver el siguiente link: Ejemplo 1 – Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador

SIGUIENTE: Dinámica de una Sistema Electromecánico con Motor DC

Los libros de donde extraje imágenes, ecuaciones e información, son los siguientes:

  1. Robert Resnick, tomo1
  2. Dinamica_de_Sistemas, Katsuhiko Ogata
  3. Control Systems Engineering, Norman Nise
  4. Sistemas de Control Automatico, Benjamin Kuo
  5. Ingenieria de Control Moderna, 3° ED. – Katsuhiko Ogata
Atención:

Te recomiendo el libro “Sistema masa-resorte-amortiguador, 73 Ejercicios Resueltos”. Lo he escrito luego de agrupar, ordenar y resolver los ejercicios más frecuentes en los libros que se utilizan en las clases universitarias de Ingeniería de Sistemas de Control, Mecánica, Electrónica, Mecatrónica y Electromecánica, entre otras.

Si necesitas adquirir la destreza de solucionar problemas, ésta es una excelente opción para entrenarte y ser eficaz al presentar exámenes, o tener una base sólida para iniciar estas carreras profesionales. 

INDICE

  • Capítulo 1———————————————————- 1
    • Sistema Masa-Resorte-Amortiguador (desplazamiento traslacional)
  • Capítulo 2———————————————————- 51
    • Sistema Masa-Resorte-Amortiguador (desplazamiento rotacional)
  • Capítulo 3———————————————————- 76
    • Sistema Mecánico con engranajes
  • Capítulo 4———————————————————- 89
    • Sistema eléctrico, electrónico
  • Capítulo 5———————————————————-114
    • Sistema Electromecánico – Motor DC
  • Capítulo 6——————————————————— 144
    • Sistema del nivel de líquido
  • Capítulo 7——————————————————— 154
    • Linealización de sistemas no lineales
Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Simulación en Matlab, Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, atención inmediata !!

email: dademuchconnection@gmail.com 

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Relacionado:

Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador

Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador

Dinámica de una Sistema Electromecánico con Motor DC

Ejemplo 1 – Función de Transferencia de Sistema Electromecánico

Ejemplo 1 – Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador

Diagrama de Bloques – Ingeniería de Control

Respuesta Transitoria de un Sistema de Control

Simulación de Respuesta Transitoria con Matlab

Estabilidad de un sistema de control

Error en estado estable de un sistema de control

PID – Acciones básicas de sistemas de control

PID – Efecto de las acciones de control Integral y Derivativo

PID – Diseño y configuración del controlador 

Anuncios
The Learning Organization

Learning Organization – Conceptual Framework.

The basic meaning of a learning organization is an organization that is continually expanding its capacity to create its future.

The five "component technologies" to innovate learning organizations.

The ferment in management will continue until we build organizations that are more consistent with man’s higher aspirations beyond food, shelter and belonging.” Moreover, many who share these values are now in leadership positions. I find a growing number of organizational leaders who, while still a minority, feel they are part of a profound evolution in the nature of work as a social institution. “Why can’t we do good works at work?” asked Edward Simon, president of Herman Miller, recently.

Business is the only institution that has a chance, as far as I can see, to fundamentally improve the injustice that exists in the world. But first, we will have to move through the barriers that are keeping us from being truly vision-led and capable of learning.” Perhaps the most salient reason for building learning organizations is that we are only now starting to understand the capabilities such organizations must possess.

For a long time, efforts to build learning organizations were like groping in the dark until the skills, areas of knowledge, and paths for development of such organizations became known. What fundamentally will distinguish learning organizations from traditional authoritarian “controlling organizations” will be the mastery of certain basic disciplines. That is why the “disciplines of the learning organization” are vital.

Today, I believe, five new “component technologies” are gradually converging to innovate learning organizations. Though developed separately, each will, I believe, prove critical to the others’ success, just as occurs with any ensemble. Each provides a vital dimension in building organizations that can truly “learn,” that can continually enhance their capacity to realize their highest aspirations:

  1. Systems thinking is a conceptual framework, a body of knowledge and tools that has been developed over the past fifty years, to make the full patterns clearer, and to help us see how to change them effectively.
  2. Personal Mastery. People with a high level of personal mastery are able to consistently realize the results that matter most deeply to them— in effect, they approach their life as an artist would approach a work of art. They do that by becoming committed to their own lifelong learning. Personal mastery is the discipline of continually clarifying and deepening our personal vision, of focusing our energies, of developing patience, and of seeing reality objectively. As such, it is an essential cornerstone of the learning organization—the learning organization’s spiritual foundation. But surprisingly few organizations encourage the growth of their people in this manner. This results in vast untapped resources: “People enter business as bright, welleducated, high-energy people, full of energy and desire to make a difference,” says Hanover’s O’Brien. “By the time they are 30, a few are on the “fast track” and the rest ‘put in their time’ to do what matters to them on the weekend. They lose the commitment, the sense of mission, and the excitement with which they started their careers. We get damn little of their energy and almost none of their spirit.” And surprisingly few adults work to rigorously develop their own personal mastery. Here, I am most interested in  the connections between personal learning and organizational learning, in the reciprocal commitments between individual and organization, and in the special spirit of an enterprise made up of learners.
  3. Mental Models. The discipline of working with mental models starts with turning the mirror inward; learning to unearth our internal pictures of the world, to bring them to the surface and hold them rigorously to scrutiny. It also includes the ability to carry on “learningful” conversations that balance inquiry and advocacy, where people expose their own thinking effectively and make that thinking open to the influence of others.
  4. Building Shared Vision. The practice of shared vision involves the skills of unearthing shared “pictures of the future” that foster genuine commitment and enrollment rather than compliance. In mastering this discipline, leaders learn the counterproductiveness of trying to dictate a vision, no matter how heartfelt.
  5. Team Learning. How can a team of committed managers with individual IQs above 120 have a collective IQ of 63? The discipline of team learning confronts this paradox. We know that teams can learn; in sports, in the performing arts, in science, and even, occasionally, in business, there are striking examples where the intelligence of the team exceeds the intelligence of the individuals in the team, and where teams develop extraordinary capacities for coordinated action. When teams are truly learning, not only are they producing extraordinary results but the individual members are growing more rapidly than could have occurred otherwise. If a learning organization were an engineering innovation, such as the airplane or the personal computer, the components would be called “technologies.”

For an innovation in human behavior, the components need to be seen as disciplines. By “discipline,” I do not mean an “enforced order” or “means of punishment,” but a body of theory and technique that must be studied and mastered to be put into practice. A discipline is a developmental path for acquiring certain skills or competencies. As with any discipline, from playing the piano to electrical engineering, some people have an innate “gift,” but anyone can develop proficiency through practice.

System Thinking - The Fifth Discipline

It is vital that the five disciplines develop as an ensemble. This is why systems thinking is the fifth discipline. It is the discipline that integrates the disciplines, fusing them into a coherent body of theory and practice. It keeps them from being separate gimmicks or the latest organization change fads. Without a systemic orientation, there is no motivation to look at how the disciplines interrelate. By enhancing each of the other disciplines, it continually reminds us that the whole can exceed the sum of its parts.

But systems thinking also needs the disciplines of building shared vision, mental models, team learning, and personal mastery to realize its potential. Building shared vision fosters a commitment to the long term. Mental models focus on the openness needed to unearth shortcomings in our present ways of seeing the world. Team learning develops the skills of groups of people to look for the larger picture that lies beyond individual perspectives. And personal mastery fosters the personal motivation to continually learn how our actions affect our world. Without personal mastery, people are so steeped in the reactive mindset (“someone/something else is creating my problems”) that they are deeply threatened by the systems perspective.

At the heart of a learning organization is a shift of mind—from seeing ourselves as separate from the world to connected to the world, from seeing problems as caused by someone or something “out there” to seeing how our own actions create the problems we experience. A learning organization is a place where people are continually discovering how they create their reality. And how they can change it. People talk about being part of something larger than themselves, of being connected, of being generative.

Metanoia

The word is “metanoia” and it means a shift of mind. In the early (Gnostic) Christian tradition, it took on a special meaning of awakening shared intuition and direct knowing of the highest, of God.

To grasp the meaning of “metanoia” is to grasp the deeper meaning of “learning,” for learning also involves a fundamental shift or movement of mind.

Real learning gets to the heart of what it means to be human. Through learning we re-create ourselves. Through learning we become able to do something we never were able to do. Through learning we reperceive the world and our relationship to it. Through learning we extend our capacity to create, to be part of the generative process of life. There is within each of us a deep hunger for this type of learning.

This, then, is the basic meaning of a “learning organization”—an organization that is continually expanding its capacity to create its future. For such an organization, it is not enough merely to survive. “Survival learning” or what is more often termed “adaptive learning” is important—indeed it is necessary. But for a learning organization, “adaptive learning” must be joined by “generative learning,” learning that enhances our capacity to create.

A few brave organizational pioneers are pointing the way, but the territory of building learning organizations is still largely unexplored. It is my fondest hope that this book can accelerate that exploration: The-Fifth-Discipline.

Source:

  • The Fifth Discipline – The Art and Practices of Learning Organizations. By Peter M. Senge – 1990

Literature Review made by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Probabilidades

Elementos de un modelo probabilístico – Axiomas.

Un modelo probabilístico es una descripción matemática de una situación incierta. Debe estar de acuerdo con un marco teórico fundamental que tenga dos ingredientes principales: null

Espacio de muestra Ω y Evento (The sample space Ω)

Cada modelo probabilístico implica un proceso subyacente, llamado experimento, que producirá exactamente uno de varios resultados posibles. El conjunto de todos los resultados posibles se denomina Espacio Muestral del experimento y se denota con Ω. Un subconjunto del espacio muestral, es decir, una recopilación de posibles resultados, se denomina Evento. Es importante tener en cuenta que en nuestra formulación de un modelo probabilístico, solo hay un experimento.

El espacio muestral de un experimento puede consistir en un número finito o infinito de resultados posibles. Los espacios muestrales finitos son conceptualmente y matemáticamente más simples. Aún así, los espacios muestrales con un número infinito de elementos son bastante comunes. Como ejemplo, considere lanzar un dardo sobre un objetivo cuadrado y ver el punto de impacto como resultado.

Independientemente de su número, los diferentes elementos del espacio muestral deben ser distintos y mutuamente excluyentes, de modo que, cuando se lleve a cabo el experimento, haya un resultado único.

Generalmente, el espacio muestral elegido para un modelo probabilístico debe ser colectivamente exhaustivo, en el sentido de que no importa lo que suceda en el experimento, siempre obtenemos un resultado que se ha incluido en el espacio muestral. Además, el espacio de muestra debe tener suficientes detalles para distinguir entre todos los resultados de interés para el modelador, mientras se evitan los detalles irrelevantes.

Para resumir: este conjunto denominado Espacio Muestral debe ser tal que, al final del experimento, siempre se pueda señalar uno y exactamente uno de los posibles resultados y decir que este es el resultado que se produjo. Los resultados físicamente diferentes deben distinguirse en el espacio muestral y corresponder a puntos distintos. Pero cuando decimos resultados físicamente diferentes, ¿qué queremos decir? Realmente queremos decir diferente en todos los aspectos relevantes, pero quizás no diferente en aspectos irrelevantes.

Leyes de Probabilidad

Supongamos que nos hemos asentado en el espacio muestral Ω asociado con un experimento en particular, proceso esbozado en el apartado anterior. Para completar el modelo probabilístico, ahora debemos introducir una Ley de Probabilidad.

Intuitivamente, una ley de probabilidad especifica la “probabilidad” de cualquier resultado , o de cualquier conjunto de posibles resultados (un evento, como lo llamamos antes) que forman parte del espacio muestral Ω. Más precisamente, la ley de probabilidad asigna a cada evento A, un número P (A), denominado probabilidad de A, que satisface los siguientes axiomas:

1. No negatividad.

null

2. Aditividad. Si A y B son dos conjuntos disjuntos, entonces la probabilidad de su unión satisface lo siguiente:

null

Más genéricamente, si el espacio muestral  tiene un número infinito de eventos y A1, A2, A3, A4,… es una secuencia de conjuntos disjuntos de eventos, entonces la probabilidad de su unión satisface lo siguiente:

null

3. Normalización. La probabilidad de todo el espacio muestral  es igual a 1:

null

Para visualizar en que consiste la ley de probabilidad, considere una unidad de masa que se “extiende” sobre todo el espacio muestral Ω. Entonces, P (A) es simplemente la masa total que fue asignada colectivamente a los elementos de A. En términos de esta analogía, el axioma de aditividad se vuelve bastante intuitivo: la masa total en una secuencia de eventos (o conjunto de eventos) separados es la suma de sus masas individuales

Hay muchas propiedades naturales que pueden derivarse de los anteriores enunciados. Por ejemplo, utilizando los axiomas de normalización y aditividad podemos encontrar la probabilidad del evento vacío (o conjunto vacío) P (Ø) como sigue

null

Esto implica que:

null

Modelo Discreto - Ley de probabilidad discreta

Si el espacio muestral consiste en un número finito de resultados posibles, entonces la ley de probabilidad se especifica por las probabilidades de los eventos que consisten en un solo elemento. En particular, la probabilidad de cualquier  evento {s1, s2, …., sn} es la suma de las probabilidades de cada uno de sus elementos:

null

En el caso especial donde las probabilidades P(s1), P(s2), …, P(sn) son todas de un mismo valor, tomando en cuenta el axioma de normalización, obtenemos la siguiente ley.

Discrete Uniform Probability Law 

Si el espacio muestral consta de n resultados posibles que son igualmente probables (es decir, todos los eventos de un solo elemento tienen la misma probabilidad), la probabilidad de cualquier evento A nos es dada por:

null

Modelo Continuo

Los modelos probabilísticos con espacio muestral continuo se diferencian de sus homólogos discretos en que las probabilidades de los eventos de un solo elemento pueden no ser suficientes para caracterizar la ley de probabilidad.

Propiedades de las leyes de probabilidad

Las leyes de probabilidad tienen una serie de propiedades, que pueden deducirse de los axiomas. Algunos de ellas se resumen a continuación.:

null

El rol de la teoría de probabilidades.

La teoría de la probabilidad puede ser una herramienta muy útil para hacer predicciones y decisiones que se aplican al mundo real. Ahora, si sus predicciones y decisiones serán buenas dependerá de si ha elegido un buen modelo. ¿Has elegido un modelo que proporcione una representación suficientemente buena del mundo real? ¿Cómo se asegura de que este sea el caso? Existe todo un campo, el campo de las estadísticas, cuyo propósito es complementar la teoría de la probabilidad utilizando datos para obtener buenos modelos. Y así tenemos el siguiente diagrama que resume la relación entre el mundo real, las estadísticas y la probabilidad. El mundo real genera datos. El campo de estadística e inferencia utiliza estos datos para generar modelos probabilísticos. Una vez que tenemos un modelo probabilístico, utilizamos la teoría de la probabilidad y las herramientas de análisis que nos proporciona. Y los resultados que obtenemos de este análisis conducen a predicciones y decisiones sobre el mundo real. Video sugerido: Interpretation and uses of Probability

 

null

 

Fuentes:

  1. Introduction to probability (bertsekas, 2nd, 2008)
  2. Probability – The Science of Uncertainty and Data (MITx – 6.431x)

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Probability

Elements of a probabilistic model – models and axioms.

A probabilistic model is a mathematical description of an uncertain situation. It must be in accordance with a fundamental framework which has two main ingredients:

null

Sample space and Events

Every probabilistic model involves an underlying process, called the experiment,  that will produce exactly one out of several possible outcomes. The set of all possible outcomes is called the sample space of the experiment, and is denoted by . A subset of the sample space, that is, a collection of possible outcomes, is called an Event. It is important to note that in our formulation of a probabilistic model, there is only one experiment.

The sample space of an experiment may consist of a finite or an infinite number of possible outcomes. Finite sample spaces are conceptually and mathematically simpler. Still, sample spaces with an infinite number of elements are quite common. As an example, consider throwing a dart on a square target and viewing the point of impact as the outcome.

Regardless of their number, different elements of the sample space should be distinct and mutually exclusive, so that, when the experiment is carried out, there is a unique outcome.

Generally, the sample space chosen for a probabilistic model must be collectively exhaustive, in the sense that no matter what happens in the experiment, we always obtain an outcome that has been included in the sample space. In addition, the sample space should have enough detail to distinguish between all outcomes of interest to the modeler, while avoiding irrelevant details.

To summarize– this set should be such that, at the end of the experiment, you should be always able to point to one, and exactly one, of the possible outcomes and say that this is the outcome that occurred. Physically different outcomes should be distinguished in the sample space and correspond to distinct points. But when we say physically different outcomes, what do we mean? We really mean different in all relevant aspects but perhaps not different in irrelevant aspects.

Probability Laws

Suppose we have settled on the sample space associated with an experiment. To complete the probabilistic model, we must now introduce a Probability Law.

Intuitively, a probability law specifies the “likelihood” of any outcome, or of any set of possible outcomes (an event, as we called it early). More precisely, the probability law assigns to every event A, a number P(A), called the probability of A, satisfying the following axioms:

1. Nonnegativity.

null

2. Additivity. If A and B are two disjoints events, then the probability of their union satisfies the following:

null

More generally, if the sample space has an infinite number of elements and A1, A2, A3, A4,… is a sequence of disjoint events, then the probability of their union satisfies:

null

3. The probability of the entire sample space is equal to 1, that is:

null

In order to visualize a probability law, consider a unity of mass which is “spread” over the sample space . Then, P(A) is simply the total mass that was assigned collectively to the elements of A. In terms of this analogy, the additivity axiom becomes quite intuitive: the total mass in a sequence of disjoint events is the sum of their individual masses.

There are many natural properties of a probability law which can be derived from them. For example, using the normalization and additivity axioms we may find out the probability of the empty event P(Ø) as following:

null

This implies that:

null

Discrete Model - Discrete Probability Law 

If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element. In particular, the probability of any event {s1, s2, …., sn} is the sum of the probabilities of its elements:

null

In the special case where the probability P(s1), P(s2), …, P(sn) are all the same, in view of the normalization axiom we obtain the following law.

Discrete Uniform Probability Law 

If the sample space consists of n possible outcomes which are equally likely (i.e., all single-element events have the same probability), the probability of any event A us given by:

null

Continuous Model

Probabilistic models with continuous sample space differ from their discrete counterparts in that the probabilities of the single-element events may not be sufficient to characterize the probability law.

Properties of Probability Laws

Probability laws have a number of properties, which can be deduced from the axioms. Some of them are summarized below:

null

The role of Probability Theory

Probability theory can be a very useful tool for making predictions and decisions that apply to the real world. Now, whether your predictions and decisions will be any good will depend on whether you have chosen a good model. Have you chosen a model that’s provides a good enough representation of the real world? How do you make sure that this is the case? There’s a whole field, the field of statistics, whose purpose is to complement probability theory by using data to come up with good models. And so we have the following diagram that summarizes the relation between the real world, statistics, and probability. The real world generates data. The field of statistics and inference uses these data to come up with probabilistic models. Once we have a probabilistic model, we use probability theory and the analysis tools that it provides to us. And the results that we get from this analysis lead to predictions and decisions about the real world.  Suggested video: Interpretation and uses of Probability

null

 

Sources:

  1. Introduction to probability (bertsekas, 2nd, 2008)
  2. Probability – The Science of Uncertainty and Data (MITx – 6.431x)

Literature review made by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Travel Writing

Requisitos Visa de Estudio España – Lo más importante.

Resulta insuficiente la información que aparece en la página web del Ministerio de Asuntos Exteriores del Gobierno de España, referida a la solicitud de Visa de Estudio para un tiempo mayor de 90 días. En Guayaquil, hoy 4 de julio del 2019, mi esposa entregó en el Consulado Español todos los documentos solicitados en la siguiente dirección:

http://www.exteriores.gob.es/Consulados/GUAYAQUIL/es/InformacionParaExtranjeros/Paginas/VisadosGuayaquil/Visado_Estudios.aspx

Sin embargo, sólo al pagar la cita y la tasa ($70) y asistir a dicha cita, fue correctamente atendida e informada de los requisitos para obtener la Visa, entre los cuales destaca el requerimiento imprescindible de contar con al menos 9.000 dólares en una cuenta bancaria (o tarjeta de crédito, beca, préstamo..por la misma cantidad).

La funcionaria que le atendió, hizo caso omiso al resto de los documentos presentados: seguro médico, boleto aéreo (sólo se requiere la reserva), matrícula de estudio pagada, reserva de alojamiento, certificado médico, antecedentes penales…Ella fue directamente al estado de cuenta y de inmediato informó a mi esposa que no contaba con los recursos financieros suficientes, al menos 9.000 dólares, para un postgrado de un año en Andalucía.

Por tanto, es lo más importante para ellos, el capital. No vale la pena engañarse invirtiendo tiempo y dinero en el resto de los requisitos si no se cuenta con el principal. A continuación, una copia del documento donde aparecen los requisitos…el que debería circular en internet para evitar pecar de ingenuo:

Requerimientos de subsanación..

Visa Estudiante Requisitos

A modo de advertencia, cabe acotar que a pesar de consultar a varios asesores que pululan como moscas alrededor de los consulados españoles en América, ninguno nos advirtió de ese requisito principal, resaltando que en la mayoría de dichos asesores priva la necesidad de cobrar primero por gestiones como la reserva aérea o el seguro médico, antes que espantar al cliente potencial con la información esencial sobre el capital.

Nuevo resguardo de solicitud de protección internacional - España

Resguardo proteccion internacional España

Para mayor información:

Prof. Larry

whatsapp +593981610731

Matemática básica

Símbolos matemáticos básicos más importantes – Tutor Larry

Lógica de predicados.

Cuantificadores.

  1. Cuantificador existencial (∃). Se utiliza para decretar que un elemento cualquiera, existe en las matemáticas, y exhibe tal o cual propiedad. Se lee existe.
  2. Cuantificador existencial con unicidad (∃!). Decreta que existe un único elemento que cumple con cierta propiedad. Se lee existe un único.
  3. Cuantificador universal (∀). Expresa que tal propiedad se cumple para la totalidad de un conjunto de elementos. Se lee para todos.
  4. Tal que (/). Todos los elementos tal que se verifique una propiedad particular. También se utiliza para este caso el símbolo (:)

Ejemplo:

  1. Supongamos que queremos resolver la siguiente ecuación:

Si sabemos que la ecuación tiene solución, y expresamos esa solución con palabras, diríamos:

Utilizando la notación Lógica de predicados, podemos escribir de forma matemática la declaración anterior de la siguiente manera:

También se puede escribir:

 

  1. La expresión ‘para todo x se cumple que x=x’ se puede escribir como:

 

 

Órdenes parciales.

Comparación.

  1. El símbolo significa menor que, por tanto, la expresión  significa: a menor que b.
  2. El símbolo significa mayor que, por tanto, la expresión  significa: a mayor que b.
  3. El símbolo significa menor o igual que, por tanto, la expresión  significa: a menor igual que b.
  4. El símbolo significa mayor que, por tanto, la expresión  significa: a mayor o igual que b.

 

Teoría de conjuntos.

Pertenencia.

  1. Pertenece a (). Se lee pertenece a. Lo contrario se escribe (). Supongam0s que tenemos un conjunto A, y tenemos un elemento que pertenece al conjunto A, podemos escribir esto como:

Lo cual se lee como  pertenece a A.

Inclusión de símbolos.

  1. Contenido en ().Se lee está contenido en. Lo contrario se escribe (). Supongam0s que tenemos un conjunto A, y tenemos otro conjunto Si el conjunto A está incluido en el conjunto B, podemos escribir esto como:

Lo cual se lee como A está incluido en B.

  1. Subconjunto o igual que ().Se lee es subconjunto de o es igual que. Lo contrario se escribe () que se lee ni subconjunto de o no es igual que.

 

 

 

 

Control System Analysis, PID, PID Control

PI Controller – Proportional Integral – Control System

Steady-state error can be improved by placing an open-loop pole at the origin,
because this increases the system type by one
. For example, a Type 0 system
responding to a step input with a finite error, will responds with zero error if the system
type is increased by one. But, we want to do this without affecting the transient response.

However, if we add a pole at the origin to increase the system type, the angular contribution of the open-loop poles at hypothetical point A is no longer 180, and the root locus no longer goes through point A, as shown in Figure 1.a and 1.b:

Figure 1.

To solve the problem, we also add a zero close to the pole at the origin, as shown
in Figure 2:

Figure 2.

Now the angular contribution of the compensator zero and compensator pole cancel out, point A is still on the root locus, and the system type has been increased. That is how we can improve the steady-state error without affecting the transient response.

A compensator with a pole at the origin and a zero close to the pole is called an ideal integral compensator, or Proportional-plus-Integral PI compensator, which transfer function Gc(s)  is:

Next example allows to find how PI compensation works.

For control system of Figure 3, it is required to reduce steady-state error to zero, through a PI controller, keeping damping at ξ=0.173. The plant transfer function is G(s) and its original controller is represented by the gain k:

Figure 3.

The first step is to evaluate the system before the compensation, then to find the location of the two closed-loop second-order dominant poles  in order to get the damping requiered by the design specifications.

Figure 4 shows the Root-Locus of the system before compensation:

>> sgrid(z,0)
>> s=tf(‘s’);
>> G=1/((s+1)*(s+2)*(s+10));
>> rlocus(G);

Figure 4.

Using the damping line in Matlab, we can find the intersection point between the root-locus and the value ξ=0.173as we can see in Figure 5:

>> z=0.173;
>> sgrid(z,0)

Figure 5.

The intersection of Figure 5 shows us that adjusting the gain to k=165 of the original controller, we obtain the damping requiered: ξ=0.173. We also see in Figure 5 that the closed-loop second-order dominant poles s1 and s2, before compensation are:

Now we look for the third pole in the root locus. In Figure 6 we must set the same gain k=165 at the third pole line, in consequence s3 is located at:

Figure 6.

With k=165 we calculate the steady-state error e1(∞) for a step input, before compensation:

Where kp1 the position constant before compensation:

Where kG(s) is the system forward transfer function multiplied by the adjusted gain, before compensation, as in Figure 3. Therefore:

We add a PI controller in cascade into the system, as in Figure 7:

Figure 7.

Here, we have matched the gain constant of the compensator with the original gain constant, that is to say k=ki. The constant a is determined by the location of compensator zero, wich must be near the compensator pole. That is why we set the compensator zero at s=-0.1 , that is to say  a=0.1. The root locus of this compensated system is in Figure 8:

>> G=(s+0.1)/(s*(s+1)*(s+2)*(s+10));
>> rlocus(G);

Figure 8.

In view of the fact that we want to maintain the transient response as unchanged as possible, in Figure 9 we draw the damping line in the root locus and search for the point of intersection between the lines of the root locus and ξ=0.173:

>> z=0.173;
>> sgrid(z,0);

Figure 9.

Adjusting the gain to k=159 in Figure 9, we obtain the damping ξ=0.173. We see that closed-loop second-order dominant poles s1 and s2, after compensation, are:

Looking for the third pole in the root locus,  we must set the gain k=159 at the third pole line. After that, s3 is located at:

These results show that approximately the values ​​of the 3 poles before and after the PI compensation have been conserved, indicating a similar transient response after correcting the error in steady state from 0.108 to 0, as shwon later.

The forward transfer function G2(s)  of the system after compensation is:

One more time, we calculate steady-state error e2(∞) for a step input, after compensation:

In consequence:

Figure 10 compares the step response of the closed-loop system  before and after compensatio PI:

>> G1=165/((s+1)*(s+2)*(s+10));
>> sys_antes=feedback(G1,1);
>> G2=(159*(s+0.1))/(s*(s+1)*(s+2)*(s+10));
>> sys_despues=feedback(G2,1);
>> step(G1,G2)

Figure 10.

Figure 10 shows that through PI compensation we have managed to improve the steady-state error without considerably modifying the transient response of the original system.

Compensación en Cascada - Lag Compensation

In construction…

Source :

  1. Control Systems Engineering, Nise

Written by Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Análisis de sistemas de control, Lugar geométrico de las raíces, PID

Controlador PI – Proporcional Integral – Sistemas de Control

El error en estado estable de un sistema de control puede ser mejorado directamente, colocando un polo en el origen en el camino de transferencia directa (an open-loop pole at the origin), debido a que esto eleva el número de tipo del sistema. Pero generalmente interesa lograr esta reducción sin modificar la respuesta transitoria de dicho sistema.

Por ejemplo, un sistema de tipo 0, que responde a una entrada escalón unitario con un error finito, al ser elevado a sistema tipo 1, responderá a la misma entrada con un error en estado estable igual a cero.

Sin embargo, si añadimos un polo en el origen para incrementar el valor del tipo de sistema, de cero a uno por ejemplo, la contribución angular de los polos a lazo abierto en un punto hipotético A no será de 180, y así el punto A no estará en el LGR (no intercepta el LGR)  del sistema compensado (es decir, se modificará notablemente la respuesta transitoria del sistema), como se puede observar en las Figuras 1.a y 1.b:

Figura 1.

Para resolver este problema, además de añadir el polo en el origen, también añadimos un zero cercano a ese polo en el origen, como se puede observar el la Figura 2:

Figura 2.

Ahora, la contribución angular de los polos y zeros a lazo abierto del punto hipotético A vuelve a ser 180 debido a que la contribución angular del compensador zero se cancela con la compensación angular del compensador polo. Es decir, el punto A vuelve a estar en el LGR del sistema compensado. De esta manera mejoramos el error en estado estable sin modificar la respuesta transitoria del sistema.

Un compensador con un polo en el origen y un zero cerca de dicho polo en el origen, es conocido como  Compensador Ideal Integral (Ideal Integral Compensator), o Proportional-Plus-Integral, mejor conocido como  Controlador PI, cuya función de transferencia Gc(s)  es de la forma:

El siguiente ejemplo nos permitirá descubrir como trabaja un Controlador PI.

Para el sistema de control de la Figura 3, se requiere reducir el error en estado estacionario a cero, mediante un controlador PI, manteniendo un factor de amortiguamiento ξ=0.173. La función de transferencia de la planta es G(s) y su controlador original está representado por la ganancia k:

Figura 3.

El primer paso es evaluar el sistema antes de la compensación, y luego determinar la ubicación de los polos dominantes de segundo orden para el factor de amortiguamiento requerido por el enunciado de diseño.

El Lugar Geométrico de las Raíces del sistema sin compensar, se muestra en la Figura 4:

>> sgrid(z,0)
>> s=tf(‘s’);
>> G=1/((s+1)*(s+2)*(s+10));
>> rlocus(G);

Figura 4.

Utilizando la línea de amortiguamiento con valor de aportada por Matlab, podemos encontrar el punto de intersección entre el LGR del sistema y ξ=0.173como podemos observar en la Figura 5:

>> z=0.173;
>> sgrid(z,0)

Figura 5.

La intersección de la Figura 5 nos muestra que ajustando la ganancia k=165 del sistema original, obtenemos un factor de amortiguamiento ξ=0.173. Vemos también en la Figura 5 que los polos dominantes s1 y s2 de segundo orden del sistema a lazo cerrado, antes de la compensación son:

Ahora buscamos el tercer polo del LGR que requiere el sistema para cumplir con el requerimiento de diseño. Al desplazarnos por el LGR en la Figura 6 hasta alcanzar la ganancia k=165, podemos observar que el tercer polo s3 del sistema a lazo cerrado, está ubicado en:

Figura 6.

Con la ganancia k=165 procedemos a calcular el error en estado estable e1(∞) para una entrada escalón, antes de la compensación:

Donde kp1 es la constante de posición antes de la compensación y se calcula mediante la siguiente fórmula:

Dónde kG(s) es la función de transferencia directa del sistema con el ajuste de ganancia, antes de la compensación, tal como lo muestra la Figura 3. Por tanto:

Añadimos un compensador PI en cascada al sistema, como se muestra en la Figura 7:

Figura 7.

Aquí, hemos hecho coincidir la constante de ganancia del compensador con la constante de ganancia original, es decir, k=ki. La constante a está determinada por la posición de decidamos otorgar al zero del compensador. Debido a que es ideal colocar este zero muy cerca del polo en el origen, seleccionamos el punto sobre el eje real s=-0.1 para ubicar el zero del compensador, es decir  a=0.1. El LGR del sistema así compensado se muestra en la Figura 8:

>> G=(s+0.1)/(s*(s+1)*(s+2)*(s+10));
>> rlocus(G);

Figura 8.

En vista de que queremos mantener inalterada en lo posible la respuesta transitoria, en la Figura 9 trazamos la línea de amortiguamiento en el LGR y buscamos nuevamente el punto de intersección entre ξ=0.173  y las líneas del LGR:

>> z=0.173;
>> sgrid(z,0);

Figura 9.

La Figura 9 nos muestra que ajustando la ganancia k=159 del sistema compensado, obtenemos un factor de amortiguamiento ξ=0.173. Vemos también que los polos dominantes s1 y s2 de segundo orden del sistema a lazo cerrado, después de la compensación son:

Para ubicar el tercer polo a lazo cerrado del LGR que requiere el sistema para cumplir con el requerimiento de diseño, aprovechamos la misma Figura 9 y ajustamos la ganancia en la rama del tercer polo hasta alcanzar k=159, así obtenemos que:

Estos resultados muestran que aproximadamente se han conservado los valores de los 3 polos antes y después de la compensación PI, lo que indica una respuesta transitoria semejante luego de corregir el error en estado estable de 0.108 a 0, como se demuestra a continuación.

La función de transferencia directa G2(s)  de nuestro sistema después de la compensación es:

Calculamos nuevamente el error en estado estable e2(∞) para una entrada escalón, después de la compensación:

En consecuencia:

La Figura 10 compara la respuesta al escalón unitario del sistema  lazo cerrado antes y después de la compensación PI:

>> G1=165/((s+1)*(s+2)*(s+10));
>> sys_antes=feedback(G1,1);
>> G2=(159*(s+0.1))/(s*(s+1)*(s+2)*(s+10));
>> sys_despues=feedback(G2,1);
>> step(G1,G2)

Figura 10.

La Figura 10 demuestra que mediante la compensación PI hemos logrado mejorar el error en estado estable sin modificar considerablemente la respuesta transitoria del sistema original.

Compensación en Cascada - Lag Compensation

En construcción…

Fuente:

  1. Control Systems Engineering, Nise

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

Sin categoría

Design a PI compensator to yield a steady-state error equal to zero -Control System

Given the system of Figure 2, operating with a damping ratio of 0.174, show that the addition of the ideal integralcompensator shown in Figure 2 reduces the steady-state error to zero for a step input without appreciably affecting transient response. The compensating network is chosen with a pole at the origin to increase the system type and a zero at -0:1, close to the compensator pole, so that the angular contribution of the compensator evaluated at the original, dominant, second-order poles is approximately zero.Thus, the original, dominant, second-order  closed-loop poles are still approximately on the new root locus.

 

In construction…meanwhile see

Sin categoría

Diseño de un compensador PI para lograr un error en estado estable igual a cero

Dado el sistema de la Figura 1, que funciona con una relación de amortiguamiento de 0.174, se muestra que la adición del compensador integral ideal que se muestra en la figura 2 reduce el error de estado estable a cero para una entrada por pasos sin afectar apreciablemente la respuesta transitoria. La red de compensación se elige con un polo en el origen para aumentar el tipo de sistema y un cero en -0: 1, cerca del polo del compensador, de modo que la contribución angular del compensador evaluada en los polos original, dominante, de segundo orden es aproximadamente cero. Por lo tanto, los polos de bucle cerrado originales, dominantes y de segundo orden aún se encuentran aproximadamente en el nuevo locus raíz.

En construcción…mientras, ver