Análisis de sistemas de control, Lugar geométrico de las raíces

El lugar geométrico de las raíces con Matlab

Para obtener la gráfica d el lugar geométrico de las raíces es de gran utilidad contar con una aplicación computarizada, entre las cuáles resalta rlocus de Matlab. Sin embargo, no deja de ser importante aprender las bases y propiedades del lugar geométrico de las raíces, así como la forma de interpretar los datos proporcionados por el lugar geométrico para fines de análisis y diseño (El lugar geométrico de las raíces de un sistema de control – 1era. parte. ).

Como primer ejemplo, vamos a confirmar la gráfica del lugar geométrico de las raíces para un sistema ya estudiado en la 2da parte (El lugar geométrico de las raíces de un sistema de control – 2da. parte. ):

null

Cuya forma aparece en la Figura 8-8:

null

null

La forma factorizada de esta ecuación característica es:

null

Es decir:

nullObtenemos el lugar geométrico de G(s)H(s) en Matlab mediante la siguiente línea de comandos:

>> s=tf(‘s’)

>> sys=(1)/(s*(s+3)*(s^2+2*s+2))

>> rlocus(sys)

Obtenemos la siguiente gráfica:

null

Podemos observar la similitud con la Figura 8-8. Colocando el cursor en el punto de intersección superior con el eje imaginario, podemos constatar que en dicho punto el valor de la ganancia K=8.1 a la altura de s=0+j1.09, mientras que haciendo lo mismo, colocando el cursor en el punto de intersección inferior con el eje imaginario, podremos ver el mismo valor para K en s=0-j1.09.

null

En el lugar geométrico de las raíces de Matlab el valor de K varía entre 0 e infinito (0≤K≤∞), por lo que cada lugar geométrico va desde K=0 hasta K=∞, a diferencia de lo que se observa en la Figura 8-8, en la cual el lugar geométrico se presenta de k=-∞ hasta k=+∞.

Podemos observar además en el lugar geométrico de las raíces provisto por  Matlab para este sistema, lo siguiente:

  1. Los lugares geométricos son simétricos con respecto al eje real.
  2. Los cuatro puntos sobre el lugar geométrico de las raíces donde K=0 (los polos, donde inician los lugares geométricos) son s=0, -3, -1+j, -1-j. Aquellos donde K=∞ (los ceros, donde finalizan los lugares geométricosson s=∞, ∞ , ∞ , e .
  3. El máximo entre n y m es 4, por lo que el lugar geométrico tiene 4 ramas, señaladas en Matlab por las ramas de color verde (inicia en -3), azul (inicia en 0), celeste (inicia en -1-j) y rojo (inicia en -1+j). Utilizando el cursor podemos recorrer cada rama y verificar lo dicho.
  4. El número de asíntotas es 4, (n-m=4). Como el número de polos finitos excede al número de ceros finitos, el lugar geométrico de las raíces se aproxima a s=∞ a lo largo de las asíntotas.
  5. Los ángulos y el centroide de las asíntotas se dan a continuación:

null

null

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011

email: dademuchconnection@gmail.com

 

Anuncios

10 comentarios en “El lugar geométrico de las raíces con Matlab”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s