Análisis de sistemas de control, Estabilidad

Ejercicio de Estabilidad de un sistema de control – 3 casos – simulación en Matlab.

1er. caso: Sistema inestable-  Determinar estabilidad y error en estado estable del sistema de control cuya función de transferencia directa G(s) para una realimentación unitaria, es:

Analizar la estabilidad del sistema implica determinar la función de transferencia a lazo cerrado Gc(s) y luego evaluar según el siguiente criterio:

  • Los sistemas de lazo cerrado son estables si su función de transferencia tiene sólo polos ubicados a la izquierda del plano complejo. 

Por tanto, como primer paso, debemos hallar Gc(s).

1.1 Función de transferencia a lazo cerrado

La realimentación unitaria tiene la siguiente configuración:

Figura 1.

 

Luego, la función de transferencia a lazo cerrado Gc(s) se determina mediante la siguiente fórmula:

Es decir:

Corroboramos esto mediante el siguiente código en Matlab:

>>numg=1; %representa el numerador de la función de transferencia directa> >>deng=conv([1 0],[2 3 2 3 2]); ]); %representa el denominador de la función de                                                                        %transferencia directa, factorizado

>>G=tf(numg,deng); % construye la función de transferencia directa> >>Gc=feedback(G,1) % construye la función de transferencia a lazo cerrado con                                    %realimentación unitaria

Gc =

      1

  —————————————

  2 s^5 + 3 s^4 + 2 s^3 + 3 s^2 + 2 s + 1

1.2 Hallar los polos de la función de transferencia a lazo cerrado

Ahora que tenemos la función de transferencia a lazo cerrado G(c), podemos determinar sus polos. Si todos sus polos están en el lado izquierdo del plano complejo, entonces el sistema es estable. Podemos utilizar Matlab para hallar dichos polos mediante el siguiente comando que es continuación del anterior:

>> polosGc=pole(Gc)

polosGc =

-1.3307 + 0.0000i
0.3284 + 0.8899i
0.3284 – 0.8899i
-0.4131 + 0.4969i
-0.4131 – 0.4969i

Si graficamos este resultado vemos que la función de transferencia a lazo cerrado G(c) tiene dos polos en el lado derecho y tres polos en el lado izquierdo del semiplano complejo.

>> pzplot(Gc)

Figura 2. Ubicación de polos de la función de transferencia Gc.

Con respecto a este resultado, aplicamos un nuevo criterio:

  • Los sistemas de lazo cerrado son inestables si su función de transferencia posee al menos un polo ubicado en el lado derecho del plano complejo o al menos un polo de multiplicidad mayor a 1 en el eje imaginario

Según este criterio, el sistema de la Figura 1 es inestable. Cabe recordar que los polos de las función de transferencia ubicados en el lado derecho del plano complejo producen exponenciales crecientes puras o sinusoides que crecen exponencialmente.

Este hecho lo podemos visualizar al aplicar una entrada escalón unitario al sistema y observar la respuesta, mediante:

>> step(Gc)

Figura 3. Respuesta del sistema a una entrada escalón unitario.

También podemos evaluar la estabilidad del sistema directamente con el siguiente comando en Matlab:

>> isstable(Gc)

ans =     0

Si la respuesta es “1” el sistema es estable. Si la respuesta es “0”, como en este caso, el sistema es inestable.

1.3 Hallar el error en estado estable.

En este caso podemos prever que el error en estado estable será infinito, porque el sistema es inestable. Para mayor información sobre el error en estado estable ver:

2do. caso: Sistema estable – Considere ahora determinar la estabilidad del sistema y el error en estado estacionario para G2(s), función de transferencia del proceso en lazo abierto, para una realimentación unitaria:

Repetimos los pasos 1.1, 1.2 y 1.3 anteriores:

2.1 Función de transferencia a lazo cerrado

Determinamos la función de transferencia y corroboramos mediante Matlab:

Figura 4.

>>numg=3;
>> deng=conv([1 0],[1 3 2]);
>> G=tf(numg,deng);

>> Gc=feedback(G,1)

Gc=

3
———————
s^3 + 3 s^2 + 2 s + 3

Continuous-time transfer function.

2.2 Hallar los polos de la función de transferencia a lazo cerrado

>> polesGc=pole(Gc)

polesGc =

-2.6717 + 0.0000i
-0.1642 + 1.0469i
-0.1642 – 1.0469i

>> pzplot(Gc)

Figura 5. 

Recordamos el criterio de estabilidad presentado anteriormente:

  • Los sistemas de lazo cerrado son estables si su función de transferencia tiene sólo polos ubicados a la izquierda del plano complejo. 

En la Figura 5 podemos observar que los tres polos del sistema están ubicados en el lado izquierdo del plano complejo. Por tanto, el sistema de la Figura 4 es estable. Podemos corroborar esta conclusión observando la respuesta del sistema a una entrada escalón unitario en la Figura 6 y notar como a medida que pasa el tiempo, la entrada sigue a la salida, es decir, tiende a adoptar el valor de la señal de referencia y el sistema se estabiliza:

>> step(Gc)

Figura 6. 
2.3 Hallar el error en estado estable.

Para hallar el error en estado estable e(∞) para una entrada escalón unitario, hallaremos la constante de error de posición Kp y luego aplicaremos la siguiente fórmula:

Por tanto, primero hallamos Kp mediante la siguiente ecuación, y luego sustituimos en la anterior:

Obsrvación: en la ecuación anterior considere G(s)=G2(s). Entonces:

Por tanto:

Podemos concluir que el error en estado estable es cero, tal como puede anticiparse observando la Figura 6. Es decir, la entrada vale “uno”, y cuando ha pasado un tiempo considerable, la salida también vale “uno”.

3er. caso: Sistema críticamente inestable – Por último consideramos el caso de G3(s), función de transferencia del proceso en lazo abierto, para una realimentación unitaria:

3.1 Función de transferencia a lazo cerrado

Debemos hallar la función de transferencia G(c) del sistema a lazo cerrado, el cual tendría la siguiente configuración para una realimentación unitaria:

Figura 7. 

 

Podemos corroborar este resultado con Matlab mediante el siguiente código:

>> numg=3;

>> deng=conv([1 0],[1 3 1]);

>> G=tf(numg,deng);

>> Gc=feedback(G,1)

Gc =

3

——————-

s^3 + 3 s^2 + s + 3

3.2 Hallar los polos de la función de transferencia a lazo cerrado

Ahora que tenemos la función de transferencia G(c) a lazo cerrado, podemos determinar sus polos:

>> polosGc=pole(Gc)

polosGc =

-3.0000 + 0.0000i

0.0000 + 1.0000i

0.0000 – 1.0000i

Si graficamos este resultado vemos que la función de transferencia G(c) a lazo cerrado tiene dos polos en el eje imaginario y un polo en el lado izquierdo del semiplano complejo.

>> pzplot(Gc)

Figura 8. Polos de la función de transferencia a lazo cerrado. 

Con respecto a este resultado, aplicamos el siguiente criterio:

  • Los sistemas de lazo cerrado son críticamente o marginalmente inestables si su función de transferencia posee sólo polos de multiplicidad igual a uno en el eje imaginario y polos en el lado izquierdo del plano complejo.

Podemos concluir entonces que el sistema es críticamente inestable. Algunos autores prefieren decir críticamente estable, que es decir lo mismo. Para observar esta respuesta aplicamos una entrada escalón unitario al sistema:

>> step(Gc)

Figura 9. Respuesta al escalón unitario de un sistema críticamente estable.
2.3 Hallar el error en estado estable.

El sistema no converge a un resultado final. Al contrario, oscila alrededor del valor de referencia de manera indefinida.

Fuente: Control Systems Engineering, Nise

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011    /     +593981478463

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Anuncios

1 comentario en “Ejercicio de Estabilidad de un sistema de control – 3 casos – simulación en Matlab.”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s