Análisis de sistemas de control, Diagramas de bloques, Función de Transferencia, Ingeniería Eléctrica, Sistema Electromecánico

Función de transferencia del Motor DC y su carga

Hallar la función de transferencia del sistema formado por un Motor DC y su carga, como se muestra en la Figura 1:

Figura 1. Motor DC con su carga.

 

Dinámica del sistema

Considerando que:

La dinámica de este sistema es la siguiente:

Transformada de Laplace

Al aplicar la transformada de Laplace a este sistema de ecuaciones obtenemos:

Función de transferencia

La función de transferencia directa del motor Gm(s), donde:

la obtenemos mediante el siguiente procedimiento. Sustituimos la ecuación (6) en (9) y luego despejamos Ia(s):

Luego, sustituimos este resultado y la ecuación (8) en la ecuación (7):

Es decir:

 

De donde obtenemos Gm(s), la función de transferencia directa del motor:

Utilizando las ecuaciones (10) y (11), podemos representar el sistema de la Figura 1 mediante el siguiente diagrama de bloques:

Para ilustrar el caso de un lazo cerrado, presentamos ahora el siguiente ejemplo, donde el motor DC y su carga se incorporan a un sistema de control de posición.

Hallar la función de transferencia del sistema de seguimiento de la la Figura 2:

Figura 2. Sistema de control de posición.

Este caso ha sido analizado al detalle en el siguiente link: Servomotores – Sistema de control de posición

Considerando que:

Al aplicar la transformada de Laplace:

Con estas últimas y las ecuaciones del sistema motor-carga, podemos asegurar que la función de transferencia θL(s)/ θr(s) del sistema de seguimiento de la Figura 2, y su diagrama de bloques, son:

Figura 3. Diagrama de bloques del sistema de control de posición de la Figura 2.

SIGUIENTE:

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011    /    +593981478463

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

Anuncios
Análisis de sistemas de control, Diagramas de bloques, Función de Transferencia, Respuesta en el tiempo, Sistema Electromecánico

Sistema de control de posición con realimentación de velocidad (taquimétrica).

Considere un sistema de control de posición como el de la Figura 1:

Figura 1. Sistema de Control de posición. 

Anteriormente vimos que el diagrama de bloques del sistema de la Figura 1 es el siguiente:

Figura 2. Diagrama de bloques del sistema de control de posición de la Figura 1.

Ver deducción en el siguiente link: Servomotores – Sistema de control de posición

La derivada del desplazamiento angular de salida del motor m(s)/dt, se realimenta negativamente a la entrada del sistema para mejorar el desempeño. En este caso se utiliza un tacómetro en lugar de diferenciar físicamente θm(s).

El sistema de seguimiento de la Figura 1 con realimentación tacométrica tendrá entonces el siguiente diagrama de bloques:

Figura 3. Diagrama de bloques del Sistema de seguimiento con realimentación de velocidad.

Dónde kt es la constante de ganancia del tacómetro. Reduciendo la realimentación negativa interna obtenemos el diagrama de la Figura 4:

Figura 4. 

De esta manera obtenemos la Función de Transferencia Directa Gm(s) del sistema de control de posición con realimentación de velocidad:

Figura 5.

Comparación de la respuesta transitoria del sistema antes y después de la realimentación de velocidad.

En construcción…

Breve reseña sobre El Tacómetro.

Al igual que los potenciómetros, los tacómetros son dispositivos electromecánicos que convierten energía mecánica en energía eléctrica. Trabaja esencialmente como un generador de voltaje, con la salida de voltaje proporcional a la magnitud de la velocidad angular del eje de entrada. La Figura 4-33 refleja el uso común de un tacómetro en un sistema de control de velocidad:

La dinámica del tacómetro se puede representar como:

null

Donde et(t) es el voltaje de salida, θ(t) es el desplazamiento del motor en radianes, ω(t) es la velocidad del rotor en rad/s, y Kt es la constante del tacómetro. Luego, términos del desplazamiento del motor:

null

Análisis de sistemas de control, Respuesta en el tiempo, Sistema Electromecánico

Respuesta transitoria de un sistema de control de posición – Servomotores – Simulación en Matlab

Para el estudio de la respuesta transitoria de un sistema de control, lo más conveniente es contar con la representación prototipo. Es decir, si tenemos el modelo matemático de un sistema, debemos representar dicho sistema mediante un diagrama de bloques donde esté claramente expresada la función de transferencia directa G(s) y una realimentación negativa unitaria como se ilustra en la Figura 1:

Figura 1. Sistema de control con realimentación unitaria

Ya sabemos que la función de transferencia a lazo cerrado C(s)/R(s)  del sistema de control de la Figura 1 se determina mediante la siguiente fórmula:

Denominamos a C(s)/R(s) “modelo prototipo” (o configuración prototipo), cuando tiene la siguiente forma:

 

Dónde: null

Otra forma de verlo es:

Para el análisis de la respuesta transitoria es conveniente escribir:

Donde  σ es denominado atenuación; el factor actual de amortiguamiento B y el factor de amortiguamiento crítico Bc que es igual a dos veces la raíz cuadrada de JK:

Para más teoría sobre respuesta transitoria ver: Respuesta Transitoria de un Sistema de Control

Respuesta transitoria de un sistema de control de posición

Aplicaremos esta teoría al modelo para el sistema de control de posición deducido anteriormente, cuyo esquema se ilustra en la Figura 2:

Figura 2. Sistema de Control de posición. 

Para el sistema de la Figura 2 hemos desarrollado el siguiente diagrama de bloques:

Figura 3. Diagrama de bloques de un sistema de control de posición.

Como podemos ver en la Figura 3, la función de transferencia directa G(s)  que utilizaremos para determinar el modelo prototipo y a partir de allí analizar la respuesta transitoria, es:

Dónde:

Mientras que:

Dónde:

Estas funciones han sido deducidas en el siguiente link: Servomotores – Sistema de control de posición

Antes de determinar la ecuación prototipo (representación prototipo) para el sistema de seguimiento de la Figura 2, equivalente a la ecuación (1), considere los siguientes valores para los parámetros de la función G(s):

Tabla 1. 

Sustituimos estos valores en la ecuación (2), despejamos convenientemente y obtenemos la función de transferencia directa G(s) evaluada en el punto de operación de interés en el cual funciona el sistema de seguimiento de la Figura 2:

 

Con este resultado actualizamos el diagrama de bloques de la Figura 3:

Figura 4. Diagrama de bloques del sistema de seguimiento funcionando en el punto de operación determinado por la Tabla 1.

El diagrama de bloques de la Figura 4 ya nos permite utilizar Matlab para evaluar la respuesta transitoria del sistema a una entrada escalón unitario. Sin embargo, podemos calcular dicha respuesta de forma analítica utilizando las ecuaciones (3) y (4), y el modelo prototipo de la ecuación (1):

La ecuación (5) es el equivalente de la ecuación (1) para el sistema de seguimiento de la Figura 2. Entonces, podemos asegurar que la frecuencia natural ωn y el factor de amortiguamiento relativo ζ de dicho sistema son:

Este resultado para el valor del factor de amortiguamiento relativo ζ indica que estamos en presencia de un sistema subamortiguado.

En base a los resultados obtenidos para la frecuencia natural ωn y el factor de amortiguamiento relativo ζ del sistema de control de la Figura 2, podemos evaluar los parámetros de la respuesta transitoria del sistema para una entrada escalón unitario

Para ver la teoría relacionada ver: Respuesta Transitoria de un Sistema de Control. De acuerdo con este documento, se presentan ahora los parámetros de importancia en la respuesta transitoria de un sistema a una entrada escalón unitario, y de inmediato se evalúa cada parámetro para el sistema de interés:

  • Sobrepaso máximo (Mp)

  • Tiempo de asentamiento (Ts)

null

  • Tiempo de retardo (Td)

null

Simulación en Matlab

Podemos corroborar estos resultados mediante la simulación en Matlab. Para obtener la respuesta transitoria al escalón unitario del sistema de la Figura 2, ejecutamos los siguientes comandos:

>> numg=5.5;

>> deng=conv([1 0],[0.13 1]);

>> G=tf(numg,deng)

>> sys=feedback(G,1)

>> step(sys)

Figura 5. Respuesta al escalón unitario del sistema de seguimiento.

La gráfica de la Figura 5 nos una respuesta deseable. Es deseable que la respuesta transitoria de un sistema de control dado sea lo suficientemente rápida y lo suficientemente amortiguada. Esto se logra mediante un factor de amortiguamiento ζ entre 0.4 y 0.8. Pequeños valores de ζ (ζ<0.4) producen excesivo levantamiento máximo en la respuesta transitoria, mientras que un sistema con alto ζ (ζ>0.8) responde de manera muy lenta. En este ejemplo, resulta aceptable el valor de ζ=0.59. Veremos además que el levantamiento máximo y el tiempo de levantamiento entran en conflicto. Es decir, no es posible disminuir el tiempo de levantamiento y el levantamiento máximo al mismo tiempo.

La respuesta además es bastante rápida (0.22 segundos), y apenas con 10% de sobrepaso. Por último, a medida que pasa el tiempo, la respuesta tiende a uno como valor final, lo que anticipa un error en estado estacionario igual a cero. Esto indica que la salida sigue a la señal de referencia, es decir, la carga estará ubicada en el punto que desea el operador del sistema al indicar él  mismo, mediante el potenciómetro de entrada, dicho valor de referencia.

La información sobre los parámetros de importancia los podemos obtener mediante el siguiente comando:

>> stepinfo(sys)

SettlingTime: 0.9111

Overshoot: 9.9906

En  la Figura 6 podemos observar en la gráfica la ubicación de los valores anteriores:

Figura 6. Valores de los parámetros de respuesta transitoria.

Se puede ver que los resultados de la simulación son bastante parecidos a los obtenidos analíticamente. Utilizando la función damp(), podremos encontrar los valores del coeficiente de amortiguamiento ζ , la constante de tiempo τ y el de la frecuencia natural ωn:

>> damp(sys)

Pole                                       Damping           Frequency Time             Constant
(rad/seconds)                    (seconds)
-3.85e+00 + 5.25e+00i         5.91e-01                 6.50e+00                        2.60e-01
-3.85e+00  – 5.25e+00i         5.91e-01                 6.50e+00                        2.60e-01

Por su parte, se puede ver que los resultados de la simulación para la frecuencia natural ωn y el factor de amortiguamiento relativo ζ del sistema, son exactamente iguales a los obtenidos analíticamente.

Relacionado:

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011    /    +593981478463

Atención Inmediata !!

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Atención:

Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital … simulación en Matlab opcional.

 

Ingeniería Eléctrica, Sistema Electromecánico

Definición de Sistema Electromecánico

“Los Sistemas Electromecánicos son aquellos sistemas híbridos de variables mecánicas y eléctricas”. Las aplicaciones para componentes electromecánicos cubren un amplio espectro, desde sistemas de control para robots y rastreadores de estrellas, hasta electrodomésticos y controles de posición del disco duro en una computadora, o el control de motores DC en sistemas de aire acondicionado para instalaciones residenciales.

gettyimages-155388818-1024x1024
Motor de Imán Permanente para electrodomésticos, detalle del devanado de cobre y el eje – Detail of copper winding, stack and shaft of a electric permeant magnet motor for home appliances.

La Figura 2.1 muestra un sistema de accionamiento electromecánico. Consiste de una fuente de poder y energía, un circuito de compuerta para el convertidor, convertidores electrónicos (rectificador, inversor, controlador electrónico de poder), sensores de corriente (derivadores, transformador de corriente, sensor Hall), sensor de voltaje (divisor de voltaje, transformador de potencial), sensores de velocidad (tacómetros) y sensores de desplazamiento (codificadores), máquinas rotativas trifásicas, cajas de engranajes y cargas específicas (bomba, ventilador, automovil, etc). En la Figura 2-1 todos los componentes, con excepción de los engranajes, están representados por una Función de Transferencia (variables de salida en función del tiempo), mientras que la caja de engranajes está representada por una Función Característica (variable de salida Xout en función de la variable de entrada Xin)

SIGUIENTE: Dinámica de una Sistema Electromecánico con Motor DC

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011    /    +593981478463

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Power Electronics, Sistema Electromecánico

Sistema de Control de Motor DC en Matlab – PWM (Pulse width Modulation)

Los actuadores en aplicaciones de robótica, en especial los Motores DC, deben ser controlados con precisión con el fin de obtener, por ejemplo, el movimiento deseado en brazos y piernas de un robot. Esto requiere del uso de amplificadores de potencia para suministrar el correcto nivel de voltaje (o corriente) a la armadura del motor. Para lograr esto, el uso de amplificadores proporcionales como el amplificador operacional resulta ser un método muy ineficiente y posiblemente destructivo debido a la gran pérdida de potencia en forma de calor. Una alternativa es el control de voltaje utilizando un conmutador ON-OFF. El PWM (Pulse Width Modulation por sus siglas en Inglés ) es el método más común para variar el voltaje promedio suministrado a un motor DC.

Modelaremos un sistema de control para un motor DC impulsado por una señal de entrada constante y observaremos que la corriente y el movimiento de rotación a la salida del motor cumplan con los valores esperados.

Este modelo muestra cómo utilizar el conmutador de voltaje conocido como PWM (Pulse Width Modulation) y el puente H (H-Bridge) para controlar un motor DC, el cual utiliza los parámetros de la hoja de datos del fabricante, que especifican que el motor entrega 10W de potencia mecánica a 2500 rpm y la velocidad sin carga de 4000 rpm cuando se ejecuta desde una fuente de alimentación de 12V CC. Por lo tanto, si el voltaje de referencia PWM se establece en su valor máximo de + 5V, entonces el motor debe funcionar a 4000 rpm. Si se establece en + 2.5V, entonces debe funcionar a aproximadamente 2000 rpm.

Para una revisión matemática de la dinámica de un motor DC, ver:

¿Qué es PWM?

PWM es una técnica para el control efectivo del voltaje de armadura en un motor DC, utilizando solamente un switch ON-OFF. La Figura 2.3.3 ilustra la señal de salida de un equipo PWM:

null

El PWM varía la relación entre la duración del estado ON con respecto a la duración del estado OFF. Un solo ciclo de estados ON y OFF representa el periodo del PWM, mientras que el porcentaje del estado ON con respecto al periodo del PWM es denominado “Duty Rate” (ritmo de trabajo). La primera señal PWM mostrada en la Figura 2.3.3, está a 60% de trabajo, mientras la segunda lo está a 25%. Si la fuente de voltaje que alimenta el sistema es V=10 volts, el voltaje promedio realmente transmitido al motor DC es de 6 volts en el primer caso y de 2.5 volts en el segundo. El periodo del PWM es establecido de tal manera que sea mucho más corto que la constante de tiempo asociada al movimiento mecánico.  La frecuencia del PWM está usualmente entre los 2 y los 20 KHz, mientras que un ancho de banda típico del sistema de control del motor es de 100 Hz. Por lo tanto, la conmutación discreta no influye sustancialmente al movimiento mecánico en la mayoría de los casos.

Si la constante de tiempo Te es mucho mayor que el período del PWM, la corriente real que fluye hacia la armadura del motor es una curva suave, como se ilustra en la Figura 2.3.4:

Modelo en Simulink
  1. Seleccionar Simulink Library del menú principal de Matlab
  2. Una vez en la librería de Simulink, seleccionar New Model
  3. En librería, seleccionar la siguiente lista de componentes y añadirlos al nuevo modelo. Para agregar componentes la modelo hacer clik derecho sobre el bloque que se desea agregar y seleccionar Add block to the model.

  1. Los bloques se van agregando uno sobre otro, así que debemos ir separándoles en el modelo a medida que son añadidos. Según la versión de Matlab, la ubicación puede cambiar. Una manera de ubicarlos rápidamente es utilizar el buscador de la librería. Al finalizar el proceso de selección, nuestro modelo y sus componentes debería verse como sigue:

  1. Ahora, debemos conectar los componentes de acuerdo al siguiente esquema:

  1. Configuración
  1. Configurar el DC Voltage Source block parameters como sigue:
    • Constant voltage:  2.5 V
  2. Configurar el Controlled PWM Voltage block parameters como sigue:
    • PWM frequency: 4000 Hz
    • Simulation modeto Averaged

Este valor le dice al bloque que genere una señal de salida cuyo valor es el valor promedio de la señal PWM. La simulación del motor con una señal promediada calcula el comportamiento del motor en presencia de una señal PWM.

3, Configurar el H-Bridge block parameters como sigue:

  • Simulation modeto Averaged

Configurar el Motor block parameters como sigue, dejando las unidades por defecto:

  • Electrical Torque tab:
    • Model parameterizationto By rated power, rated speed & no-load speed
    • Armature inductance; 0.01
    • No-load speed: 4000
    • Rated speed (at rated load): 2500
    • Rated load (mechanical power): 10
    • Rated DC supply voltage: 12

Mechanical tab:

  • Rotor inertia: 2000
  • Rotor damping: 1e-06

Configure los parámetros de “Solver” para usar un “Solver” de tiempo continuo porque los modelos de Simscape Electrical solo se ejecutan con un “Solver” de tiempo continuo. Aumente el tamaño de paso máximo que el solucionador puede tomar para que la simulación se ejecute más rápido, como sigue:

  1. En el menú principal del modelo, seleccione SimulationModel Configuration Parameters para abrir Configuration Parameters dialog box.
  2. Selecciona 0de15s (Stiff/NDF) del submenú Solver
  3. Click OK.

7. Correr la simulación y observar los resultados

En el menú principal, seleccionar Simulation > Run.

Para ver la corriente y la velocidad hacer doble-click en el Scope windows para cada parámetro, los resultados esperados son los siguientes:

Fuente:

  1. DC Motor Model
  2. PWM-Controlled DC Motor

Escrito por Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial.

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf +593998524011

WhatsApp: +593998524011    /    +593981478463

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

 

Análisis de sistemas de control, Sistema Electromecánico

Sistema de control de posición – Servomotores

Se denomina Servomotor a los motores DC utilizados en los sistemas de control de posición, también llamados sistemas de seguimiento. En la industria, un Servomotor es aquel que lleva incorporado un sensor de rotación, un amplificador de error y está diseñado específicamente para ser usado en un sistema de control.

Gracias a los avances de la electrónica de potencia, los servomotores están siendo sustituidos por el Motor paso a paso (Stepper), versión “digital” de un motor eléctrico, debido a que estos últimos son más económicos cuando se trata de lograr alto desempeño (alta precisión) en el control del movimiento de cargas livianas a velocidad moderada.

A continuación, vamos a deducir la Función de Transferencia θL(s)/ θr(s) para el Servosistema de la Figura 1, a partir del análisis detallado de cada uno de los componentes de dicho sistema electromecánico.

Figura 1. Sistema de Control de posición. 
Dinámica del sistema - Amplificador diferencial

El objetivo de un Servosistema es controlar la posición de la carga mecánica de acuerdo con la posición de referencia.

Un par de potenciómetros funcionan como un dispositivo de medición de error. Convierten las posiciones de entrada y salida en señales eléctricas proporcionales. En la Figura 1, un operador manipula el potenciómetro de entrada y determina la posición angular θr(t) del cursor. La posición angular θr(t) genera a su vez un potencial eléctrico que es proporcional a dicha posición angular. Este voltaje, que podemos denominar er(t), alimenta la terminal positiva del amplificador, que puede ser un amplificador diferencial, es decir, que resta la entrada positiva de la negativa (compara la entrada con la salida) y luego amplifica esta diferencia.

El amplificador diferencial tiene una impedancia de entrada muy alta y una impedancia de salida baja, muy conveniente debido a que los potenciómetros son esencialmente circuitos de alta impedancia y no toleran una variación de corriente mientras que al alimentar el circuito de la armadura del motor, la salida del amplificador no influye significativamente en el valor de la resistencia de dicha armadura.

Por su parte, la posición del eje de salida del motor, que es un desplazamiento angular, determina la posición angular θc(t) del cursor del potenciómetro de salida, el cual genera un potencial eléctrico ec(t), que luego alimenta el terminal negativo del amplificador diferencial, tal como se muestra en la Figura 1.

La diferencia entre er(t) y ec(t) es la señal de error e(t), o bien:

El objetivo del sistema de control de posición es actuar hasta reducir la señal de error e(t) a cero, lo que implica que la posición de la carga tendría el mismo valor que la señal de referencia (la entrada). Si existe un error (er(t) y ec(t) no son iguales), el motor DC desarrolla un par para rotar la carga de salida de tal forma que el error se reduzca a cero.

A la salida del amplificador se presenta el voltaje ea(t) que se aplica a la armadura del motor DC, tal como se muestra en la Figura 2.

Figura 2. Amplificador.

Si Ka es la ganancia constante del amplificador diferencial, entonces:

Necesitaremos la transformada de Laplace de las ecuaciones relevantes del sistema para poder desarrollar el diagrama de bloques del mismo. Luego de aplicar la transformada de Laplace a la ecuación anterior, obtenemos:

Para obtener el resto de las ecuaciones del sistema, analizamos cada etapa del mismo por separado, iniciando por su parte más importante, el Motor DC.

Análisis del Motor DC a lazo abierto

La Figura 3 muestra el modelo esquemático del motor DC a lazo abierto (aislado del resto del sistema), y su representación en diagrama de bloques:

Figura 3. Motor DC a lazo abierto. a) Esquema general; b) Diagrama de bloques.

Las ecuaciones del Motor DC cuando está a lazo abierto, son las siguientes:

dónde:

null

El modelo matemático de un motor DC y su diagrama de bloques fueron desarrollados en el siguiente link: Dinámica de un Motor DC,

Cuando el motor DC está incorporado a un sistema electromecánico como el de la Figura 1, se dice que está a lazo cerrado. Para obtener la función de transferencia Gm(s) del motor a lazo cerrado, se debe obtener el momento de inercia equivalente que actúa sobre el eje de salida del motor, el cual incluye el momento de inercia del motor Jm y el momento de inercia de la carga JL. Por tanto las ecuaciones del motor presentadas con anterioridad, varían. Es necesario calcular esta variación, cosa que haremos al estudiar el tren de engranajes.

Análisis de los Potenciómetros

Un potenciómetro es un transductor electromecánico que convierte energía mecánica en energía eléctrica. La entrada del dispositivo es una forma de desplazamiento mecánico que puede ser traslacional o rotacional. Cuando se aplica un voltaje a través de las terminales fijas del potenciómetro, el voltaje de salida er(t), que se mide entre la terminal variable y tierra, es proporcional al desplazamiento de entrada θr(t), multiplicada por la constante de ganancia del potenciómetro Kr. La Figura 4 muestra el esquema para el potenciómetro rotacional que forma parte de la Figura 1. De inmediato se presenta la expresión matemática para la ganancia del potenciómetro de entrada:

Figura 4. Potenciómetro rotacional de entrada del sistema. 

Procediendo de igual forma podemos obtener la ganancia para el potenciómetro de salida del sistema de la Figura 1:

Tomar en cuenta que, en la Figura 1:

Entonces:

Recordando que:

Sustituyendo obtenemos que:

Aplicando transformada de Laplace:

 

Análisis del tren de engranaje

Los trenes de engranajes se utilizan con mucha frecuencia en los sistemas electromecánicos con el fin de reducir la velocidad, amplificar el par o para obtener la transferencia de potencia más eficiente apareando el miembro impulsor con una carga dada. El tren de engranajes de la Figura 1 y su carga, se amplifican en la Figura 5:

Figura 5. Tren de engranajes de la Figura 1

En el tren de engranajes de la Figura 5, se puede demostrar que:

Y que:

 Haciendo igualaciones convenientes obtenemos que:

Es decir, si lo que nos interesa es determinar el torque en el eje del motor, o sea Tm, entonces podemos utilizar el hecho de que:

En definitiva, en base a lo anterior se puede comprobar que la manera más práctica de reflejar la carga JL hacia el eje de entrada del tren de engranaje en la Figura 1 para determinar la masa inercial equivalente Jeq vista por el motor en su eje de salida (flecha del motor), es mediante la siguiente fórmula:

Igual sucede con el coeficiente de fricción equivalente vista por por la flecha del motor:

Análisis del Motor DC y su carga

Con esta nueva información, podemos hallar las ecuaciones del motor y su carga. Luego, hallar la ecuación de transferencia Gm(s) para representar al motor, y al servosistema en su totalidad, mediante un diagrama de boques.

Considere la Figura 6, que representa la etapa del servosistema donde se localiza el motor DC y la conexión con su carga JL a través del tren de engranajes:

Figura 6. El motor DC, su carga y el tren de engranajes.

Considerando que:

La dinámica del motor y su carga mostrados en la Figura 6 es la siguiente:

La función de transferencia directa del motor Gm(s), donde:

Es:

Esta función fue deducida en el siguiente link: Función de transferencia del Motor DC y su carga

Utilizando la función de transferencia directa del motor y la transformada de Laplace de la ecuación (5), podemos representar el sistema de la Figura 6 mediante el siguiente diagrama de bloques:

Figura 7. Diagrama de bloques del motor y su carga
Diagrama de bloques y función de transferencia del sistema de control de posición. 

Haciendo uso del diagrama de la Figura 7, y de todos los resultados anteriores, podemos representar el sistema de seguimiento de la Figura 1 mediante el siguiente diagrama de bloques:

Figura 8. Diagrama de bloques del sistema de control de posición de la Figura 1.

La función de transferencia θL(s)/ θr(s) del sistema de seguimiento se puede deducir a partir del diagrama de bloques anterior donde es importante acotar que se trata de una realimentación unitaria negativa donde podemos aplicar la siguiente fórmula:

Dónde:

 

Aplicando la fórmula, obtenemos que:

 

En definitiva, la función de transferencia θL(s)/ θr(s)  del sistema de seguimiento:

Logramos así una representación muy práctica del servosistema, que nos permite analizar con comodidad su estabilidad, su respuesta transitoria y su error en estado estable. Con frecuencia se considera el valor de la inductancia Lmuy por debajo del valor de la resistencia Ra. Si se considera que La=0 en la ecuación anterior, obtenemos un sistema de segundo orden, equivalente al sistema prototipo que se utiliza en sistemas de control para calcular los parámetros ωn y ζ (frecuencia natural y coeficiente de amortiguamiento relativo) de la respuesta transitoria, o para calcular las constantes de error Kp, Kv o Ka en la evaluación del error en estado estable. Al respecto, ver Respuesta Transitoria de un Sistema de ControlError en estado estable de un sistema de control

Respuesta transitoria de un sistema de control de posición

La respuesta transitoria a una entrada escalón unitario para el sistema de seguimiento de la Figura 1, será desarrollado en el siguiente link: Servomotores – Respuesta transitoria de un sistema de control de posición. Lo recomiendo.

Excepto en aquellos casos donde las oscilaciones no son toleradas, es deseable que la respuesta transitoria de un sistema de control dado sea lo suficientemente rápida y lo suficientemente amortiguada. Esto se logra mediante un factor de amortiguamiento ζ entre 0.4 y 0.8. Pequeños valores de ζ (ζ<0.4) producen excesivo levantamiento máximo en la respuesta transitoria, mientras que un sistema con alto ζ (ζ>0.8) responde de manera muy lenta. Veremos además que el levantamiento máximo y el tiempo de levantamiento entran en conflicto. Es decir, no es posible disminuir el tiempo de levantamiento y el levantamiento máximo al mismo tiempo.

SIGUIENTE:

Fuentes:

  1. Control Systems Engineering, Nise
  2. Sistemas de Control Automatico Benjamin C Kuo
  3. Modern_Control_Engineering, Ogata 4t

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011    /    +593981478463

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Atención:

Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital … simulación en Matlab opcional.

Dinámica de sistemas, Sistema Electromecánico

Dinámica de un Motor DC – Diagrama de bloques – Función de Transferencia

La dinámica de un Motor DC es determinada por un conjunto de ecuaciones que gobiernan su comportamiento. Obtener estas ecuaciones requiere la aplicación de leyes de mecánica, principios de electricidad y conocimiento de campo magnético. Especialmente, implica el conocimiento de los conceptos básicos del movimiento rotatorio. Para echar un repaso, ver: Movimiento Rotatorio – Conceptos básicos.

Las ecuaciones de un Motor DC a lazo abierto son:

Deducción a partir de principios físicos

Un Motor DC puede estar controlado por campo o por armadura. El caso más frecuente es el control por corriente (o voltaje) de armadura. Haciendo referencia a la Figura 1, un imán estacionario permanente o un electroimán genera un flujo magnético Φ, constante, denominado Fixed Field. Este flujo Φ es generado a su vez por una corriente de campo if que se supone constante (de allí deriva el nombre de Motor DC o motor de corriente continua).

Figura 1. Motor DC a lazo abierto. a) Esquema general; b) Diagrama de bloques.

El motor es controlado por un voltaje ea(t) aplicado a los terminales de la armadura. Aplicando el método de análisis de circuitos eléctricos de Kirchhoff al circuito de la Figura 1.a , deducimos la primera ecuación importante del sistema:

null

Donde La Ra representan la inductancia y la resistencia de la armadura respectivamente.

La armadura es un circuito rotativo a través del cual circula una corriente ia(t). Cuando la armadura pasa en ángulos rectos a través del flujo magnético Φ, siente una fuerza F=BLia(t) donde B es la intensidad del campo magnético y L es la longitud de la bobina o conductor. El torque Tm(t) que resulta de esta interacción hace girar el rotor, el cual es el miembro rotatorio del motor. Para un análisis lineal es necesario suponer que este torque o par es proporcional al flujo magnético Φ y a la corriente ia(t) . De esta suposición obtenemos la siguiente ecuación del sistema:

null

Donde Km es constante. Como hemos dicho que Φ también es constante, el factor Km de la ecuación anterior se reduce a una constante denominada KiDe esta manera, dicha ecuación se reduce a:

null

Donde Ki es La Constante de Proporcionalidad, también llamada constante de torque del motor (o constante de par) y es uno de los parámetros dados por los fabricantes de motores. Ki, con frecuencia denominada también Kt , viene en N-m/A.

Nota: cuando el motor es controlado por una corriente en el campo, con el fin de obtener un sistema lineal la corriente de armadura debe ser considerada constante y así el torque del motor viene dado por Tm= Kmif, donde if es la corriente de campo.

Otro importante fenómeno ocurre en el motor: Cuando el conductor (o bobina) de la armadura se mueve en ángulos rectos a través del campo magnético Φ,se genera un voltaje vb(t) en las terminales del conductor. Ya que la armadura rota en un campo magnético, el voltaje generado en su bobina es proporcional a la velocidad ωm(t) de rotación de la armadura. De esta manera obtenemos otra ecuación de gran importancia:null

Dónde:null

Denominamos a vb(t) la Fuerza Contraelectromotriz (o back emf por sus siglas en inglés); Kb es la constante de proporcionalidad llamada también constante emf.

Aunque el Motor DC es por sí mismo un sistema en lazo abierto, veremos más adelante que la fuerza contraelectromotriz vb(t), provoca un lazo realimentado dentro del motor, actuando como una “fricción eléctrica” que tiende a mejorar la estabilidad del motor.

Por último, aplicando las leyes de Newton para movimientos mecánicos rotacionales obtenemos:

Donde Jes el momento inercial (inercia) del rotor, y bes el coeficiente de fricción viscosa del motor.

Es importante recalcar que estamos definiendo las ecuaciones del motor “a lazo abierto”, es decir, sin realimentación. Por tanto, hemos logrado definir el conjunto de ecuaciones que determina la Dinámica del Motor DC operando en lazo abierto:

dónde:

null

Obtención del diagrama de bloques del sistema

Para representar la dinámica del Motor DC en diagrama de bloques, el siguiente paso consiste en aplicar la Transformada de Laplace al sistema de ecuaciones obtenidas anteriormente.

Luego de aplicar Laplace, obtenemos el siguiente conjunto de ecuaciones:

Para elaborar el diagrama de bloques del motor DC a lazo abierto a partir de este sistema de ecuaciones, empezamos dibujando el diagrama de bloques para la salida θm(s), luego mediante un integrador obtenemos Ωm(s):

Paso siguiente, despejamos Ωm(s)  de la ecuación (1) y agregamos este resultado de manera conveniente al diagrama de bloques:

Ahora, podemos obtener Tm(s) directamente de la ecuación (4), y seguimos agregando bloques al diagrama de bloques del sistema:

Por último, utilizamos las ecuaciones (2) y (3) para despejar y obtener la expresión para Ia(s):

De esta manera, tomando a Ea(s) como la entrada y a θm(s) como la salida,  se representa el sistema a continuación mediante El Diagrama de Bloques para un Motor DC operando a lazo abierto:

Figura 2. Diagrama de bloques de un Motor DC a lazo abierto. 

Aquí podemos corroborar lo que señalamos antes, que la fuerza contraelectromotriz, proporcional a KbΩm(s), genera un lazo realimentado negativo que tiende a estabilizar el sistema.

Función de Transferencia del motor DC a lazo abierto

A continuación, vamos a deducir La Función de Transferencia Gm(s) a lazo abierto de un Motor DC. Dicha función la podemos obtener reduciendo el diagrama de bloques del sistema, Figura 2.

Tal como se muestra en la Figura 1.b:

Para repasar el álgebra de diagrama de bloques, revisar: Diagrama de Bloques – Ingeniería de Control

En primer lugar, reducimos los bloques que están en cascada a uno solo:

Luego, reducimos la realimentación negativa, aplicando la siguiente regla:

Dónde:

Entonces:

Es decir:

Al reducir el diagrama de bloques, obtenemos:

De donde podemos deducir fácilmente la Función de Transferencia Gm(s) para un Motor DC a lazo abierto, la cual es:

El cociente θm(s)/Ea(s)  es conocido como Función de Transferencia Directa Gm(s).

El Motor DC a lazo cerrado

El Servomotor DC controlado por armadura es ampliamente utilizado en sistemas electromecánicos. La configuración del sistema electromecánico más comúnmente utilizado se muestra en la  Figura 2.15 mediante un diagrama de bloques, operando a una velocidad constante y sin lazo de realimentación. Mientras, en la Figura 4-38 se muestra el motor DC funcionando en lazo cerrado, es decir, con realimentación, formando parte de un sistema de control de posición. Cuando el motor DC forma parte de un mecanismo de control de posición, como este último caso, se denomina “Servomotor”.

null

null

A continuación analizamos el caso frecuente donde el Motor DC funciona como parte de un sistema a lazo cerrado denominado Sistema de Control de Posición:

SIGUIENTE:

Fuentes:

Atención:

Te recomiendo el libro “Sistema masa-resorte-amortiguador, 73 Ejercicios Resueltos”. Lo he escrito luego de agrupar, ordenar y resolver los ejercicios más frecuentes en los libros que se utilizan en las clases universitarias de Ingeniería de Sistemas de Control, Mecánica, Electrónica, Mecatrónica y Electromecánica, entre otras.

Si necesitas adquirir la destreza de solucionar problemas, ésta es una excelente opción para entrenarte y ser eficaz al presentar exámenes, o tener una base sólida para iniciar estas carreras profesionales. 

INDICE

  • Capítulo 1———————————————————- 1
    • Sistema Masa-Resorte-Amortiguador (desplazamiento traslacional)
  • Capítulo 2———————————————————- 51
    • Sistema Masa-Resorte-Amortiguador (desplazamiento rotacional)
  • Capítulo 3———————————————————- 76
    • Sistema Mecánico con engranajes
  • Capítulo 4———————————————————- 89
    • Sistema eléctrico, electrónico
  • Capítulo 5———————————————————-114
    • Sistema Electromecánico – Motor DC
  • Capítulo 6——————————————————— 144
    • Sistema del nivel de líquido
  • Capítulo 7——————————————————— 154
    • Linealización de sistemas no lineales

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Emprendedores / Empresarial.

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011    /    +593981478463

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Relacionado:

Dinámica de una Sistema Electromecánico con Motor DC

Ejemplo 1 – Función de Transferencia de Sistema Electromecánico

Ejemplo 2 – Función de Transferencia de Sistema Electromecánico

Diagrama de Bloques – Ingeniería de Control

Dinámica de un Sistema Masa-Resorte-Amortiguador

Análisis de sistemas de control, Sistema Electromecánico

Ejemplo 1 – Función Transferencia de Sistema Electromecánico

Obtener modelo matemático del sistema de control de posición de la figura. Obtener su diagrama de bloques y la función de transferencia entre el ángulo de la carga y el ángulo de referencia θc(s)/θr(s).

null

Datos:

null

Respuesta:
  1. Dinámica del sistema

null

2. Transformada de Laplace

null

3. Diagrama de bloques

null

Simplificando convenientemente para obtener un modelo cuya función de transferencia es conocida:

null

4. Función de Transferencia de cada bloque del diagrama anterior.

A partir de:

null

Obtenemos los siguiente:

null

Luego, utilizando:

null

y sustituyendo, obtenemos:

null

Donde:

null

Sustituyendo el valor de los datos en la ecuación anterior, obtenemos:

null

Simplificando:

null

Por otra parte, la ganancia del amplificador se obtiene utilizando:

null

De donde:

null

null

null

Por último, la constante de engranaje está dada por los datos y es n=1/10. Obtenemos entonces un diagrama de bloques con las siguientes funciones de transferencia:

null

5. Función de Transferencia del sistema.

La Función de Transferencia a lazo abierto Ga(s) del sistema mostrado en el diagrama anterior es:

null

De donde podemos obtener fácilmente la función de transferencia a lazo cerrado Gc(s), que es lo que nos pide el enunciado, utilizando la realimentación unitaria:

null

SIGUIENTE: Ejemplo 2 – Función de Transferencia de Sistema Electromecánico

Referencia:

  1. Sistemas de Control Automatico, Benjamin Kuo
  2. Ingenieria de Control Moderna, 3° ED. – Katsuhiko Ogata

Atención:

Te recomiendo el libro “Sistema masa-resorte-amortiguador, 73 Ejercicios Resueltos”. Lo he escrito luego de agrupar, ordenar y resolver los ejercicios más frecuentes en los libros que se utilizan en las clases universitarias de Ingeniería de Sistemas de Control, Mecánica, Electrónica, Mecatrónica y Electromecánica, entre otras.

Si necesitas adquirir la destreza de solucionar problemas, ésta es una excelente opción para entrenarte y ser eficaz al presentar exámenes, o tener una base sólida para iniciar estas carreras profesionales. 

INDICE

  • Capítulo 1———————————————————- 1
    • Sistema Masa-Resorte-Amortiguador (desplazamiento traslacional)
  • Capítulo 2———————————————————- 51
    • Sistema Masa-Resorte-Amortiguador (desplazamiento rotacional)
  • Capítulo 3———————————————————- 76
    • Sistema Mecánico con engranajes
  • Capítulo 4———————————————————- 89
    • Sistema eléctrico, electrónico
  • Capítulo 5———————————————————-114
    • Sistema Electromecánico – Motor DC
  • Capítulo 6——————————————————— 144
    • Sistema del nivel de líquido
  • Capítulo 7——————————————————— 154
    • Linealización de sistemas no lineales

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, atención inmediata !!

email: dademuchconnection@gmail.com 

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

email: dademuchconnection@gmail.com

Relacionado:

Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador

Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador

Dinámica de una Sistema Electromecánico con Motor DC

Ejemplo 1 – Función de Transferencia de Sistema Electromecánico

Ejemplo 1 – Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador

Diagrama de Bloques – Ingeniería de Control