Dinámica de sistemas, Sistema Electromecánico

Dinámica de un Motor DC

La dinámica de un Motor DC es determinada por un conjunto de ecuaciones que gobiernan su comportamiento. Obtener estas ecuaciones requiere la aplicación de leyes de mecánica, principios de electricidad y conocimiento de campo magnético. Especialmente, implica el conocimiento de los conceptos básicos del movimiento rotatorio. Para echar un repaso, ver: Movimiento Rotatorio – Conceptos básicos.

Un Motor DC puede estar controlado por campo o por armadura. En referencia a la Figura 2.35., un imán estacionario permanente o un electroimán genera un flujo magnético Φ, constante, denominado Fixed Field. Como resultado, el motor es controlado por un voltaje ea aplicado a los terminales de la armadura.

nullnull

Aplicando la teoría de circuitos de Kirchhoff , deducimos la primera ecuación característica del sistema:

null

Donde La Ra representan la inductancia y la resistencia de la armadura respectivamente.

La armadura es un circuito rotativo a través del cual circula una corriente  ia. Cuando la armadura pasa en ángulos rectos a través del flujo magnético Φ, siente una fuerza F=BLia donde B es la intensidad del campo magnético y L es la longitud de la bobina o conductor. El torque Tm que resulta de esta interacción hace girar el rotor, el cual es el miembro rotatorio del motor. Para un análisis lineal es necesario suponer que este torque o par es proporcional al flujo magnético Φ y a la corriente ia . De aquí podemos obtener la siguiente ecuación del sistema:

null

Como Φ es constante, el factor Km*Φ se reduce a una constante denominada Ki. De esta manera, la ecuación anterior se reduce a:

null

Donde Ki es La Constante de Proporcionalidad, también llamada constante de torque del motor (o constante de par) y es uno de los parámetros dados por los fabricantes de motores. Ki, con frecuencia denominada también Kt en la literatura sobre el tema, viene en N-m/A.

Nota: cuando el motor es controlado por una corriente en el campo, con el fin de obtener un sistema lineal la corriente de armadura debe ser considerada constante y así el torque del motor viene dado por Tm= Kmif, donde if es la corriente de campo.

Otro importante fenómeno ocurre en el motor: Cuando un conductor se mueve en ángulos rectos a través de un campo magnético se genera un voltaje Vb en las terminales del conductor. Ya que la armadura rota en un campo magnético, el voltaje generado en el conductor que rodea la armadura es proporcional a la velocidad de rotación de la armadura, denominada ωm. De esta manera obtenemos otra ecuación de gran importancia:

null

Donde:

null

Denominamos a Vb la Fuerza Contraelectromotriz (o back emf por sus siglas en inglés); Kb es la constante de proporcionalidad llamada también constante emf.

Aunque el Motor DC es por sí mismo un sistema en lazo abierto, veremos más adelante que la fuerza contraelectromotriz Vb, provoca un lazo realimentado dentro del motor, actuando como una “fricción eléctrica” que tiende a mejorar la estabilidad del motor.

Por último, aplicando las leyes de Newton para movimientos mecánicos rotacionales obtenemos:

null

Donde TL representa la carga, Jm es el momento inercial (inercia) del rotor, y Bm es el coeficiente de fricción viscosa del motor.

De esta manera hemos logrado definir el conjunto de ecuaciones que determina la Dinámica del Motor DC operando en lazo abierto:

nullnull

null

null

donde:

null

Para representar esta dinámica en diagrama de bloques, el siguiente paso consiste en aplicar la Transformada de Laplace a cada ecuación y despejar la salida θcomo función de las otras variables de estado.

Luego de aplicar Laplace, obtenemos el siguiente conjunto de ecuaciones:

null

Este sistema de ecuaciones, tomando a Ea(s) como la entrada y a θm(s) como la salida,  se representan a continuación mediante El Diagrama de Bloques para un Motor DC operando a lazo abierto:null

Aquí podemos corroborar lo que señalamos antes, que la fuerza contraelectromotriz, proporcional a Ωm(s), representado en el diagrama como Eb(s), genera un lazo realimentado que tiende a estabilizar el sistema.

El Servomotor DC controlado por armadura es ampliamente utilizado en sistemas electromecánicos. La configuración del sistema electromecánico más comúnmente utilizado se muestra en la  Figura 2.15 mediante un diagrama de bloques, y en la Figura 4-38, operando a una velocidad constante y sin lazo de realimentación.

null

null

Para continuar leyendo sobre sistemas electromecánicos visitar el siguiente link:

SIGUIENTE: Dinámica de una Sistema Electromecánico con Motor DC

Fuentes:

 

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Emprendedores / Empresarial.

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

 

Relacionado:

Dinámica de una Sistema Electromecánico con Motor DC

Ejemplo 1 – Función de Transferencia de Sistema Electromecánico

Ejemplo 2 – Función de Transferencia de Sistema Electromecánico

Diagrama de Bloques – Ingeniería de Control

Dinámica de un Sistema Masa-Resorte-Amortiguador

Anuncios
Análisis de sistemas de control, Dinámica de sistemas

Ejemplo 2 – Función de transferencia de sistema electromecánico.

Encontrar en términos genéricos, la función de transferencia del sistema de realimentación unitaria mostrado en la Figura P5.52(b) del cual es parte el sistema  electromecánico de la Figura P5.52(a).

1. Dinámica del sistema

 

2. Transformada de Laplace

3. Función de Transferencia Motor&Load

donde:

4. Función de transferencia directa

Para el sistema:

La función de transferencia a lazo abierto Ga(s) es:

5. Función de transferencia a lazo cerrado

La función de transferencia a lazo cerrado Gc(s) es:

Es decir:

Este problema es la primera parte de uno donde se solicita la respuesta transitoria para que el sobresalto sea de 20% y el tiempo de establecimiento sea de 2 segundos, ver el problema completo en el siguiente link: Ejemplo 1 – Respuesta transitoria de un sistema electromecánico

ANTERIOR: Ejemplo 1 – Función de Transferencia de Sistema Electromecánico

Referencia:

  1. Sistemas de Control Automatico, Benjamin Kuo
  2. Ingenieria de Control Moderna, 3° ED. – Katsuhiko Ogata
Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, atención inmediata !!

email: dademuchconnection@gmail.com 

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

email: dademuchconnection@gmail.com

Relacionado:

Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador

Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador

Dinámica de una Sistema Electromecánico con Motor DC

Ejemplo 1 – Función de Transferencia de Sistema Electromecánico

Ejemplo 1 – Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador

Diagrama de Bloques – Ingeniería de Control

Dinámica de sistemas, Ingeniería Mecánica, Transformada de Laplace

Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador

  1. Control Systems Engineering, Nise, p 101

Desarrollamos diagrama de fuerzas a cada unidad de masa, aplicando transformada de Laplace a cada fuerza por separado debido a la propiedad de superposición. Para la Masa 1 el diagrama de cuerpo libre es el siguiente:

Para la Masa 2 el diagrama de cuerpo libre es:

Para la Masa 3 el diagrama de cuerpo libre es:

La dinámica del sistema (ecuaciones de movimiento) es:

Supongamos que nuestra intención es hallar X3(s)/F(s). Primero vamos a hallar el determinante de la matriz mediante el siguiente comando en matlab:

>> s=sym(‘s’);

>> A=[4*s^2+4*s+8 -4 -2*s;-4 5*s^2+3*s+4 -3*s;-2*s -3*s 5*s^2+5*s+5];

>> delta=det(A)

delta =100*s^6 + 260*s^5 + 544*s^4 + 652*s^3 + 484*s^2 + 280*s + 80

Luego:

>> Us=sym(‘Us’);

>> B=[4*s^2+4*s+8 -4 0;-4 5*s^2+3*s+4 Us;-2*s -3*s 0];

>> CX3=det(B)

CX3 =12*Us*s^3 + 12*Us*s^2 + 32*Us*s

Entonces:De donde:

 

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Simulación en Matlab, Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, atención inmediata !!

email: dademuchconnection@gmail.com 

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

email: dademuchconnection@gmail.com

Relacionado:

Ejemplo 1 – Función Transferencia de sistema masa-resorte-amortiguador

Ejemplo 1 – Función Transferencia de Sistema Electromecánico

Simulación de Respuesta Transitoria con Matlab – Introducción

Diagrama de Bloques – Ingeniería de Control

Dinámica de un Sistema Masa-Resorte-Amortiguador

Diagrama de Bloques de Sistema Electromecánico con Motor DC

Dinámica de sistemas, Física Aplicada, Ingeniería Mecánica, Transformada de Laplace

Ejemplo 1 – Función Transferencia de sistema masa-resorte-amortiguador

Obtener la Función de Transferencia X1(s)/U(s) del sistema mecánico de la Figura 3-83 Ejercicio B318, Modern_Control_Engineering, Ogata 4t p 149.

null

Desarrollamos diagrama de fuerzas a cada unidad de masa, aplicando transformada de Laplace a cada fuerza por separado debido a la propiedad de superposición. Para la Masa 1 el diagrama de cuerpo libre es el siguiente (el análisis debido a cada movimiento X(s) se hace por separado para mayor claridad):

null

 

Para la Masa 2 el diagrama de cuerpo libre es:

null

La dinámica del sistema (ecuaciones de movimiento) es:

Así, aplicando álgebra lineal obtenemos la Función de Transferencia X2(s)/U(s) como:

 

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Simulación en Matlab, Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, atención inmediata !!

email: dademuchconnection@gmail.com 

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

email: dademuchconnection@gmail.com

Relacionado:

Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador

Ejemplo 1 – Función Transferencia de Sistema Electromecánico

Dinámica de una Sistema Electromecánico con Motor DC

Diagrama de Bloques – Ingeniería de Control

Respuesta Transitoria de un Sistema de Control

Simulación de Respuesta Transitoria con Matlab

Estabilidad de un sistema de control