Análisis de sistemas de control, Lugar geométrico de las raíces, PID

Controlador PI – Proporcional Integral – Sistemas de Control

El error en estado estable de un sistema de control puede ser mejorado directamente, colocando un polo en el origen en el camino de transferencia directa (an open-loop pole at the origin), debido a que esto eleva el número de tipo del sistema. Pero generalmente interesa lograr esta reducción sin modificar la respuesta transitoria de dicho sistema.

Por ejemplo, un sistema de tipo 0, que responde a una entrada escalón unitario con un error finito, al ser elevado a sistema tipo 1, responderá a la misma entrada con un error en estado estable igual a cero.

Sin embargo, si añadimos un polo en el origen para incrementar el valor del tipo de sistema, de cero a uno por ejemplo, la contribución angular de los polos a lazo abierto en un punto hipotético A no será de 180, y así el punto A no estará en el LGR (no intercepta el LGR)  del sistema compensado (es decir, se modificará notablemente la respuesta transitoria del sistema), como se puede observar en las Figuras 1.a y 1.b:

Figura 1.

Para resolver este problema, además de añadir el polo en el origen, también añadimos un zero cercano a ese polo en el origen, como se puede observar el la Figura 2:

Figura 2.

Ahora, la contribución angular de los polos y zeros a lazo abierto del punto hipotético A vuelve a ser 180 debido a que la contribución angular del compensador zero se cancela con la compensación angular del compensador polo. Es decir, el punto A vuelve a estar en el LGR del sistema compensado. De esta manera mejoramos el error en estado estable sin modificar la respuesta transitoria del sistema.

Un compensador con un polo en el origen y un zero cerca de dicho polo en el origen, es conocido como  Compensador Ideal Integral (Ideal Integral Compensator), o Proportional-Plus-Integral, mejor conocido como  Controlador PI, cuya función de transferencia Gc(s)  es de la forma:

El siguiente ejemplo nos permitirá descubrir como trabaja un Controlador PI.

Para el sistema de control de la Figura 3, se requiere reducir el error en estado estacionario a cero, mediante un controlador PI, manteniendo un factor de amortiguamiento ξ=0.173. La función de transferencia de la planta es G(s) y su controlador original está representado por la ganancia k:

Figura 3.

El primer paso es evaluar el sistema antes de la compensación, y luego determinar la ubicación de los polos dominantes de segundo orden para el factor de amortiguamiento requerido por el enunciado de diseño.

El Lugar Geométrico de las Raíces del sistema sin compensar, se muestra en la Figura 4:

>> sgrid(z,0)
>> s=tf(‘s’);
>> G=1/((s+1)*(s+2)*(s+10));
>> rlocus(G);

Figura 4.

Utilizando la línea de amortiguamiento con valor de aportada por Matlab, podemos encontrar el punto de intersección entre el LGR del sistema y ξ=0.173como podemos observar en la Figura 5:

>> z=0.173;
>> sgrid(z,0)

Figura 5.

La intersección de la Figura 5 nos muestra que ajustando la ganancia k=165 del sistema original, obtenemos un factor de amortiguamiento ξ=0.173. Vemos también en la Figura 5 que los polos dominantes s1 y s2 de segundo orden del sistema a lazo cerrado, antes de la compensación son:

Ahora buscamos el tercer polo del LGR que requiere el sistema para cumplir con el requerimiento de diseño. Al desplazarnos por el LGR en la Figura 6 hasta alcanzar la ganancia k=165, podemos observar que el tercer polo s3 del sistema a lazo cerrado, está ubicado en:

Figura 6.

Con la ganancia k=165 procedemos a calcular el error en estado estable e1(∞) para una entrada escalón, antes de la compensación:

Donde kp1 es la constante de posición antes de la compensación y se calcula mediante la siguiente fórmula:

Dónde kG(s) es la función de transferencia directa del sistema con el ajuste de ganancia, antes de la compensación, tal como lo muestra la Figura 3. Por tanto:

Añadimos un compensador PI en cascada al sistema, como se muestra en la Figura 7:

Figura 7.

Aquí, hemos hecho coincidir la constante de ganancia del compensador con la constante de ganancia original, es decir, k=ki. La constante a está determinada por la posición de decidamos otorgar al zero del compensador. Debido a que es ideal colocar este zero muy cerca del polo en el origen, seleccionamos el punto sobre el eje real s=-0.1 para ubicar el zero del compensador, es decir  a=0.1. El LGR del sistema así compensado se muestra en la Figura 8:

>> G=(s+0.1)/(s*(s+1)*(s+2)*(s+10));
>> rlocus(G);

Figura 8.

En vista de que queremos mantener inalterada en lo posible la respuesta transitoria, en la Figura 9 trazamos la línea de amortiguamiento en el LGR y buscamos nuevamente el punto de intersección entre ξ=0.173  y las líneas del LGR:

>> z=0.173;
>> sgrid(z,0);

Figura 9.

La Figura 9 nos muestra que ajustando la ganancia k=159 del sistema compensado, obtenemos un factor de amortiguamiento ξ=0.173. Vemos también que los polos dominantes s1 y s2 de segundo orden del sistema a lazo cerrado, después de la compensación son:

Para ubicar el tercer polo a lazo cerrado del LGR que requiere el sistema para cumplir con el requerimiento de diseño, aprovechamos la misma Figura 9 y ajustamos la ganancia en la rama del tercer polo hasta alcanzar k=159, así obtenemos que:

Estos resultados muestran que aproximadamente se han conservado los valores de los 3 polos antes y después de la compensación PI, lo que indica una respuesta transitoria semejante luego de corregir el error en estado estable de 0.108 a 0, como se demuestra a continuación.

La función de transferencia directa G2(s)  de nuestro sistema después de la compensación es:

Calculamos nuevamente el error en estado estable e2(∞) para una entrada escalón, después de la compensación:

En consecuencia:

La Figura 10 compara la respuesta al escalón unitario del sistema  lazo cerrado antes y después de la compensación PI:

>> G1=165/((s+1)*(s+2)*(s+10));
>> sys_antes=feedback(G1,1);
>> G2=(159*(s+0.1))/(s*(s+1)*(s+2)*(s+10));
>> sys_despues=feedback(G2,1);
>> step(G1,G2)

Figura 10.

La Figura 10 demuestra que mediante la compensación PI hemos logrado mejorar el error en estado estable sin modificar considerablemente la respuesta transitoria del sistema original.

Compensación en Cascada - Lag Compensation

En construcción…

Fuente:

  1. Control Systems Engineering, Nise

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

Anuncios

1 comentario en “Controlador PI – Proporcional Integral – Sistemas de Control”

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s