Análisis de sistemas de control, PID

PID – Estudio de la acción Proporcional-Integral

Para el estudio de la acción proporcional integral se considera el sistema de la Figura 3:

  1. Simule la respuesta del sistema utilizando rltool() y observe su respuesta fijando Ti en 1s y para 3 diversos valores de Kp evitando la saturación. Observe en cada caso el sobrepico porcentual, el tiempo de establecimiento y el error en régimen estacionario. Comente y analice lo observado.

Analizamos el sistema antes de añadir el controlador PI:

>> s=tf(‘s’)

>> s1=(1)/(0.2*s+1)

>> s2=(2)/(0.1*s+1)

>> s3=(1)/(s+1)

>> G=s1*s2*s3

Como resultado de la ejecución de este comando en Matlab obtenemos que la función de transferencia directa G(s) es:

nullEs decir:null

Veamos cómo es la respuesta  a la entrada escalón unitario de este sistema antes de añadir un controlador PI:

>> Gce=feedback(G,1)

>> step(Gce)

Lo más notable es que el error en estado estable es ess=1-0.667=0.333, y que se trata de un sistema que no alcanza el valor de la señal de referencia en ningún momento.

Añadir un controlador PI significa juntar las ventajas de los controladores antes estudiados (PID – Estudio de la acción proporcional, PID – Estudio de la acción integral), es decir, un amplio margen para cambiar la ubicación de las raíces de la ecuación característica, lo que incide en el amortiguamiento y el tiempo de respuesta de la respuesta transitoria, y un aumento de la tipología del sistema, lo que significa un mejoramiento en el error en estado estable

Si añadimos un controlador proporcional-integral de ganancia Kp, la función de transferencia directa G1(s) es:

Es decir:

Se puede constatar que los efectos inmediatos de aplicar el controlador PI es agregar un cero simple en s=-1 y agregar un polo simple en s=0 en la función de transferencia directa.

Mediante la herramienta de diseño rltool vamos a variar el valor de la ganancia Kp y analizar como varían el sobrepaso (Mp), el tiempo de establecimiento (Ts) y el error en régimen estacionario (ess).

Kp=1

>> G1=G*(s+1)/s

>> rltool(G1)

 

La gráfica de El Lugar de las Raíces obtenida anteriormente se corresponde con un valor de Kp=1, para el cual obtenemos los siguientes valores de importancia:

ess=0

El error en estado estable es cero, ya que el valor final de la salida es uno. Representa una mejoría fundamental para justificar el uso de un PI.

Mp=8.49%; Ts=2.11 seg

Este valor del sobrepaso se corresponde con el siguiente para el factor de amortiguamiento relativo :

Kp>1

Para valores de la ganancia mayores que uno, se genera una tendencia al incremento de los parámetros estudiados. Por ejemplo, para Kp=1.5 obtenemos:

Mp=20.1%; Ts=2.43 seg; ζ=0.455

Si aumentamos el Kp a 2.5, obtenemos lo siguiente:

Un sistema cada vez más oscilante, con un sobrepaso cerca de 40% y un tiempo de establecimiento de 3.2 s.

K<1

Si lo que se desea es aumentar el factor de amortiguamiento relativo, podemos fijarlo mediante la ventana del lugar geométrico de las raíces, haciendo click derecho y seleccionando design requirement. Supongamos que deseamos un ζ=0.7, entonces con design requirement>new>damping ratio, obtenemos:

Arrastrando las raíces al límite sugerido por las líneas negras, modificamos el sistema. Para conocer el valor de Kp correspondiente a esa situación nos referimos a la ventana de control, donde vemos que Kp=0.8789. En la ventana de la respuesta al escalón, observamos el cambio:

Mp=5.61%; Ts=2.24 s; ζ≅ 0.7

ANTERIOR: PID – Estudio de la acción integral

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Anuncios
Análisis de sistemas de control, PID

Ejemplo 1 – Diseño de un controlador PI (Proporcional-Diferencial)

Para apreciar mejor el efecto del controlador PI, veamos el siguiente ejemplo. Supongamos que tenemos el sistema de la Figura 7-23.

null

La función de transferencia directa G(s) de este sistema viene dada por la siguiente expresión:null

Donde K es la constante del preamplificador.

Las especificaciones de diseño para este sistema son las siguientes:

nullDonde:

  • ess: Error en estado estable debido a una entrada parábola
  • Mp: Sobrepaso máximo
  • Tr: Tiempo de levantamiento
  • Ts: Tiempo de asentamiento

Lo primero que vamos a hacer es analizar el error en estado estable ess del sistema antes de compensar, y ver que tanto cumple o no con el primer requerimiento de diseño (Para un repaso de este tema ver: Error en estado estable de un sistema de control).

Para una entrada parabólica debemos trabajar con la constante de aceleración Ka:nullEsto significa un error infinito para una entrada parabólica:Para mejorar el error en estado estable incorporamos un controlador PI en la trayectoria directa del sistema, el cual ahora tendrá la siguiente función de transferencia:nullAl aumentar la tipología del sistema de tipo 1 a tipo 2 de inmediato mejoramos el error en estado estable. Ahora, el ess debido a la entrada parábola será una constante:nullEs decir:

Este ejercicio ya lo trabajamos con el controlador PD. Para ese caso seleccionamos un valor de K=181.17 (Ejemplo 1 – Diseño de un controlador PD (Proporcional-Diferencial) – Matlab)

Nos permitimos la libertad de considerar el mismo valor para K en este caso con el fin de mantener la respuesta transitoria bajo condiciones aceptables y conocidas al aplicar el PD del ejemplo 1. De ser necesario ajustaremos el valor de K más adelante. Podemos apreciar que para lograr un ess según se especifica en el diseño, mientras más grande sea K, más pequeño tendrá que ser Ki, algo que puede ser conveniente. Con los valores de y ess podemos calcular un primer valor aproximado de Ki para cumplir con los requerimientos:

Lo siguiente que haremos será analizar la estabilidad del sistema debido a que de ello depende enormemente la selección de los parámetros Kp y Ki. Aplicaremos el criterio de Routh-Hurwitz (para un repaso ver Estabilidad de un sistema de control) para calcular los valores límites de los mencionados parámetros de manera tal que el sistema permanezca estable. Para ello requerimos de la ecuación característica que surge de la función de transferencia del sistema en lazo cerrado Gce(s):

null

La ecuación característica del sistema es:

null

Con esta ecuación aplicamos el criterio de Routh-Hurwitz. De esta manera descubrimos que el sistema es estable para el siguiente rango de valores:

null

Este resultado indica que el Ki/Kp del controlador no puede estar muy cerca del cero, por lo que no resulta conveniente un valor tan bajo tal como Ki=0.002215. Otro criterio para seleccionar Ki/Kp es que resulta conveniente seleccionar el cero añadido por el controlador en s=-Ki/Kp para que esté localizado cerca del origen y lejos de los polos más significativos del sistema. Mediante el lugar geométrico de las raíces en Matlab podemos ver cuáles son los polos más significativos de la ecuación característica, suponiendo una relación aceptable entre los parámetros Ki y Kp desde el punto de vista del estudio de estabilidad anterior pero relativamente cerca del origen, digamos Ki/Kp=10, manteniendo Ki constante y variando Kp (Para un repaso del tema ver: El lugar geométrico de las raíces con Matlab) Primero, arreglamos la ecuación característica en su forma 1+G(s)H(s):

Notar que de esta manera el controlador PI está añadiendo un zero en s=-10.

Aplicamos el siguiente comando en Matlab para obtener el lugar geométrico de las raíces de este sistema compensado:

>> s=tf(‘s’)

>> sys=(815265*(s+10))/(s^3+361.2*s^2)

>> rlocus(sys)

Y obtenemos:

Como se puede observar, el polo más significativo de la ecuación característica está ubicado en s=-361. Por tanto, el criterio que debemos utilizar para seleccionar s=-Ki/Kp es:nullCon este resultado, la función de transferencia directa G(s):nullQuedaría simplificada como:null

El término Ki/Kp sería despreciable comparado con la magnitud de s cuando s asume valores a lo largo del lugar geométrico de las raíces que se corresponde con un factor de amortiguamiento relativo conveniente de 0.7<ζ< 0.1. Luego, un zero en cero anula un polo en cero. El sobrepaso máximo debe ser igual o menor al 5%. Esto significa que se desea un factor de amortiguamiento relativo ζ aproximado al siguiente valor:

null

null

Con la ayuda del lugar geométrico podemos ubicar los polos que se corresponden con este valor de ζ:

De acuerdo con la gráfica, el valor de Kp requerido para obtener este factor de amortiguamiento es:

Y por tanto:

También observamos en la gráfica anterior que si Kp=0.0838, entonces las raíces de la ecuación característica (los polos del sistema) están en s1=-175+j184 y en s2=-175-j184 Si miramos alrededor de esas raíces podemos notar que el zero añadido por el controlador en s=-10 está muy cerca del origen comparado con los polos de s1 y s2, prácticamente cancelando un polo en el origen, ratificando así la aproximación que hicimos anteriormente para la función de transferencia directa de este sistema luego de la compensación:

Así:

Podemos observar la respuesta del sistema al escalón unitario de acuerdo con estos resultados parciales y la comparación de los sistemas compensado y sin compensar, mediante la siguiente simulación:

>> Ga=(815265)/(s*(s+361.2))

>> Gd=(68319)/(s*(s+361.2))

>> Gce1=feedback(Ga,1)

>> Gce2=feedback(Gd,1)

>> step(Gce1,Gce2)

La gráfica anterior, con el sistema después de la compensación en línea roja, muestra que el PI mejora el error en estado estable y reduce el sobrepaso, pero a expensas de aumentar significativamente el tiempo de levantamiento. La gráfica también nos muestra que el sobrepaso máximo es de 5%, por tanto se cumple el requerimiento. Es necesario notar que se puede seleccionar otra relación para Ki y Kp que cumpla con el requerimiento y aún mejoren el sobrepaso, por ejemplo Ki/Kp=5, Ki/Kp=2. Sólo hay que prestar atención al tema de la estabilidad del sistema. Con los valores calculados, volvemos a calcular el sobrepaso, y vemos como quedan el tiempo de levantamiento tr y el tiempo de asentamiento ts. El siguiente comando nos facilita el valor de ζ y ωn, el factor de amortiguamiento relativo y la frecuencia natural respectivamente (Para un repaso ver:Respuesta Transitoria de un Sistema de Control).

>> damp(Gce2)

Pole: -1.81e+02 + 1.89e+02i /   -1.81e+02 + 1.89e+02i

Damping: 6.91e-01

Frequency: 2.61e+02

  •  Máximo Sobrepaso (MP):

  • Tiempo de levantamiento (Tr):

>> Gd=(68319)/(s*(s+361.2))

>> sys=feedback(Gd,1)

>> step(sys)

  • Tiempo de asentamiento (Ts):null

Cosa que también podemos constatar en la gráfica de respuesta al escalón unitario generada anteriormente:

Podemos concluir que el sistema compensado cumple con los requerimientos del diseño, aunque se sobrepasa un poco en el tiempo de asentamiento. Este último se puede reducir levemente con una relación Ki/Kp=2pero a expensas de acercarse demasiado a la zona inestable del sistema.

ANTERIOR: PID – Diseño con el controlador PD (Proporcional-Diferencial)

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Atención:

Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital y le brindo una video-conferencia para explicarle la solución…incluye además simulación en Matlab.

Relacionado:

Respuesta Transitoria de un Sistema de Control

Estabilidad de un sistema de control

Simulación de Respuesta Transitoria con Matlab – Introducción

 

Análisis de sistemas de control, PID

PID – Estudio de la acción integral

Para hacer el estudio de la acción integral, considere el siguiente sistema:

1. Realizar el lugar geométrico de las raíces indicando los puntos de interés. Ejecutamos los siguientes comandos en Matlab:

>> s=tf(‘s’)

>> s1=(1)/(0.2*s+1)

>> s2=(2)/(0.1*s+1)

>> s3=(1)/(s+1)

>> G=s1*s2*s3

La función de transferencia directa G(s) es:nullArreglando:nullSi añadimos un controlador integral de ganancia Ki y Ti=1 seg, la función de transferencia directa G(s) es:

Notar que de inmediato el controlador aumenta la tipología del sistema de tipo 0 a tipo 1, mejorando así el error en estado estable. La función de transferencia Gce(s) a lazo cerrado es:

La ecuación característica del sistema es:

La ecuación característica en su forma 1+G(s)H(s) es:

Para obtener en Matlab el lugar geométrico de las raíces, ejecutamos el siguiente comando:

>> sys=(100)/(s*(s^3+16*s^2+65*s+50))

>> rlocus(sys)

Así obtenemos:

Podemos observar que tenemos un polo en el origen, añadido por el controlador, y polos en s=-1, -5 y -10. El valor que podemos darle a la ganancia Ki está bastante restringido porque debemos evitar entrar a la región de inestabilidad (semiplano con valores positivos de la variable independiente s).

Según la gráfica anterior, para Ki=1.02 el factor de amortiguamiento relativo es apenas ζ=0.145, por lo que podemos esperar que el sistema oscile bastante en su estado transitorio, mientras posee un sobrepaso máximo de 63,1%, características poco deseables para un sistema de control. Utilizando los siguientes comandos podemos corroborar esta aseveración mediante la respuesta al escalón unitario (step) para un valor exacto de Ki=1.00 para la ganancia:

>> sys2=feedback(sys,1)

>> step(sys2)

Mediante la siguiente gráfica podemos verificar el valor de las características importantes, haciendo uso del click derecho sobre la gráfica anterior y seleccionar characteristics>peak response/settling time/steady state:

La gráfica anterior señala que el valor final de la salida del sistema para una entrada escalón unitario es 1, por lo tanto el error en estado estable es cero, y es ésta la principal función de la porción integral de un controlador PID, minimizar el error para las entradas escalón, rampa o parábola. Sin embargo vemos que la respuesta transitoria no es muy satisfactoria para un controlador integral puro.

Vamos a observar como varían los valores de máximo sobrepaso (Mp), el tiempo de establecimiento (Ts) y el error en estado estable para entrada escalón (ess) para varios valores de Ki, de manera tal que se haga evidente la necesidad de combinar esta acción con la proporcional ya estudiada para el mismo sistema en PID – Estudio de la acción proporcional. Incluso vamos a intentar igualar las condiciones de diseño requeridas en el mencionado estudio: un factor de amortiguamiento ζ=0.5.

Para agilizar este estudio (no tener que aplicar el comando feedback para cada cambio de ganancia, por ejemplo), utilizaremos la herramienta de Matlab rltool:

>> rltool(sys)

Inmediatamente obtenemos el lugar geométrico de las raíces:

Ya vimos como se comporta el sistema para Ki=1.0. A partir de aquí variamos la ganancia para ver los valores de los parámetros y características de importancia.

Haremos Ki=1.2. Para ello, hacemos click derecho sobre la gráfica del lugar geométrico de las raíces y seleccionamos edit compensator, seleccionamos la casilla de valores de la ganancia c del controlador, y le adjudicamos el valor a analizar.

Apretamos enter y volvemos al lugar geométrico. El punto rosado se ha desplazado al valor actual de las raíces. Aparece una mano al colocar el cursor en dicho punto. Al hacer click izquierdo justo allí, aparece el valor del factor de amortiguamiento relativo al pie de la gráfica.

Para la ganancia Ki=1.2, ζ=0.105. La respuesta al escalón unitario se puede obtener seleccionando analysis>response to step command.

Una vez en repuesta al impulso, hacer click derecho y seleccionar systems>closed-loop r to y (blue) para obtener la siguiente gráfica:

A partir de aquí obtenemos:

Si cambiamos la ganancia en la ventana Control and estimation tool manager, cambian automáticamente el lugar geométrico y la respuesta al escalón unitario, Los resultados para valores de Ki cada vez mayores se muestran en la siguiente tabla:

Ganancia Ki=1.0 Ki=1.2 Ki=1.4 Ki=1.8
Factor de amortiguamiento  ζ=0.15 ζ =0.105  ζ=0.069  ζ=0.0149
Máximo sobrepaso Mp=59.9% Mp=68.9 Mp=76.8 Mp=90.7
Tiempo de levantamiento Tr=0.921 Tr=0.824 Tr=0.752 Tr=0.653
Tiempo de establecimiento Ts=19.8 Ts=24.9 Ts=35.4 Ts=151

A medida que Ki crece, aunque mejora el tiempo de respuesta, las condiciones generales empeoran. El factor de amortiguación casi se hace cero y aún para pequeños incrementos la inestabilidad aumenta vertiginosamente. A continuación se observa el desempeño para un Ki=1.8.

Por ello podemos afirmar que la acción integral permite un rango muy limitado de selección de la ganancia Ki. Es por ello que se acostumbra mejorar las capacidades del controlador combinando la acción integral con la proporcional (controlador PI).

Al reducir los valores de Ki podemos esperar el efecto contrario, según se observa en la siguiente tabla:

Ganancia Ki=0.2 Ki=0.5 Ki=0.8 Ki=1
Factor de amortiguamiento  ζ=0.686  ζ=0.345  ζ=0.208  ζ=0.15
Máximo sobrepaso Mp=5.1% Mp=30.9 Mp=49.7 Mp=59.9%
Tiempo de levantamiento Tr=3.39 Tr=1.48 Tr=0.752 Tr=0.921
Tiempo de establecimiento Ts=9.94 Ts=11.7 Ts=14.6 Ts=19.8

Los valores anteriores muestran que es posible conseguir un ζ=0.5. Para dar con los valores exactos hacemos click derecho sobre el lugar geométrico, seleccionamos design requirements>new>design requirement type>damping ratio>0.5. Obtenemos el lugar geométrico dividido en dos regiones.

Moviendo el cursor podemos observar que región se corresponde con un damping igual o mayor a 0.5. Arrastrando el punto rosado sobre el lugar geométrico, variamos el damping hasta lograr un 0.5. Una vez allí, podemos ver el valor correspondiente de la ganancia, (Ventana de control, c=0.317). También podemos obrar a la inversa, variando c y viendo cuánto vale el damping en el lugar geométrico. Entonces, para lograr un ζ=0.5, debemos hacer Ki=0.317. A continuación se observa la respuesta al escalón unitario y las características de importancia para esta ganancia:

Ganancia Ki=0.317
Factor de amortiguamiento  ζ=0.5
Máximo sobrepaso Mp=16.1%
Tiempo de levantamiento Tr=2.15
Tiempo de establecimiento Ts=10.7
Respuesta al impulso para diversos valores de Ki
Respuesta a la función escalón unitario, con KP=1, FA=0.15

 

Respuesta a la función escalón unitario, con KP=0.5, FA=0.345
Respuesta a la función escalón unitario, con KP=1.5, FA=0.0518

 

ANTERIOR: PID – Estudio de la acción proporcional

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Atención:Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital y le brindo una video-conferencia para explicarle la solución…incluye además simulación en Matlab.

Relacionado:

Respuesta Transitoria de un Sistema de Control

Estabilidad de un sistema de control

Análisis de sistemas de control, PID

PID – Estudio de la acción proporcional

Para hacer el estudio de la acción proporcional, considere el siguiente sistema:

1. Realizar el lugar geométrico de las raíces indicando los puntos de interés. Ejecutamos los siguientes comandos en Matlab:

>> s=tf(‘s’)

>> s1=(1)/(0.2*s+1)

>> s2=(2)/(0.1*s+1)

>> s3=(1)/(s+1)

>> G=s1*s2*s3

La función de transferencia directa G(s) es:nullArreglando:nullSi añadimos un controlador proporcional de ganancia Kp, la función de transferencia directa G(s) es:nullLa función de transferencia Gce(s) a lazo cerrado es:null

nullLa ecuación característica del sistema es:nullLa ecuación característica en su forma 1+G(s)H(s) es:

null

Para obtener en Matlab el lugar geométrico de las raíces, ejecutamos el siguiente comando:

>> rlocus(G)

Así obtenemos:

Para un repaso del tema, ver: El lugar geométrico de las raíces con Matlab

Mediante este primer ejercicio que nos proporciona el lugar geométrico de las raíces del sistema en estudio, podemos observar el efecto más inmediato de aplicar un controlador proporcional: el desplazamiento de las raíces.

El cambio en la ganancia Kp nos permite cambiar el valor de las raíces de la ecuación característica (al viajar a través de las líneas de color azul, verde y rojo del lugar geométrico en la gráfica anterior, vemos cómo cambia la ganancia Kp), lo que es lo mismo que cambiar los  polos de la función de transferencia a lazo cerrado. Al cambiar dichos polos, cambiamos el valor del coeficiente de amortiguamiento relativo ζ y la frecuencia natural ωn para una entrada escalón unitario, adaptando así la respuesta transitoria del sistema a los requerimientos de diseño que se puedan solicitar.

Notar que las raíces de la ecuación característica están en s=-10, s=-5 y s=-1, cuando Kp=0.

Pero en términos reales Kp no puede valer cero, porque en la práctica significa que anulamos la entrada al sistema y así, la salida es cero también. Para representar al sistema funcionando sin el controlador proporcional, hacemos  Kp=1. Bajo esta condición, veamos cuál es el valor de ζ , así como el valor de tres cantidades de extrema importancia para los diseñadores: el sobrepaso Mp, el tiempo de levantamiento Tr y el error en estado estable ess. Luego, supongamos que queremos modificar este desempeño en términos de ζ y variamos Kp (desplazamos las raíces) hasta lograr un  ζ=0.5.

Para un repaso del tema, ver: Respuesta Transitoria de un Sistema de Control

Kp=1

Si Kp=1, entonces:null

La función de transferencia a lazo cerrado Gce(s) es:

Utilizamos los siguientes comandos en Matlab para conocer los valores de ζ, el sobrepaso y el tiempo de establecimiento:

> >Gce=feedback(G,1)

> >damp(Gce)

Obtenemos:

Pole Damping Frequency
-2.26e+00 + 2.82e+00i 6.26e-01 3.62e+00
-2.26e+00 – 2.82e+00i 6.26e-01 3.62e+00
-1.15e+01 1.00e+00   1.15e+01

Notar que en la gráfica anterior, Kp=Gain=1. Las raíces complejas dominantes son s1=-2.26+j2.82 y s2=-2.26-j2.82, de tal modo que, según la gráfica, podemos considerar a ζ=0.626 cuando Kp=1. Con respecto al sobrepaso, el tiempo de levantamiento y el error en estado estable utilizamos el siguiente comando:

>> stepinfo(Gce)

RiseTime: 0.5626

Overshoot: 7.5449

Peak: 0.7170

>> step(Gce)

Si la entrada es el escalón unitario y la salida alcanza el valor final de c=0.663, el error en estado estable es ess=1-0.663=0.337. Vamos a ver que a pesar de variar el valor de Kp y desplazar las raíces, el controlador proporcional no anula por completo el error en estado estable, siempre tendrá un valor diferente de cero por lo que se requiere una acción integral para anular dicho error. Por otra parte, el valor del sobrepaso es Mp=7.17%, tomando en cuenta que el valor final del sistema es c=0.663 y el máximo valor alcanzado es de c=0.7170.

Hallar Kp para lograr un ζ=0.5. 

El lugar geométrico de la raíces nos permite variar el valor de la ganancia Kp hasta alcanzar el damping solicitado, ζ=0.5. Nos desplazamos sobre el lugar geométrico de las raíces en Matlab haciendo un click sobre la línea de los polos dominantes y arrastrando el punto hasta que se alcance al damping solicitado:

La gráfica anterior nos muestra que podemos obtener un ζ=0.5 cuando la ganancia Kp tiene un valor aproximado de 1.46. Si Kp=1.46, la función de transferencia directa y la función de transferencia a lazo cerrado son:

Confirmamos el valor del damping mediante:

>> Gce2=(146)/(s^3+16*s^2+65*s+196)

> >damp(Gce2)

Pole Damping Frequency
-2.04e+00 + 3.51e+00i 5.02e-01 4.05e+00
-2.26e+00  – 3.51e+00i 5.02e-01 4.05e+00
-1.19e+01 1.00e+00   1.19e+01

> >stepinfo(Gce2)

RiseTime: 0.4356

Overshoot: 15.0397

Peak: 0.8569

Se observa que el sobrepaso será mayor (de 7.5449 a 15.0397) después de la compensación (cambiar el valor de Kp de 1 a 1.46) debido a que el factor de amortiguamiento relativo ζ es menor (de 0.626 a 5.02), mientras el tiempo de levantamiento Tr mejora ligeramente (de 0.5626 a 0.4356).

Las respuestas a la entrada escalón unitario de ambos sistemas (antes y después de la compensación), pueden observarse mediante el siguiente comando de Matlab:

>> step(Gce,Gce2)

El valor final del sistema después de la compensación (en color rojo) es aproximadamente c=0.748, así que el error en estado estable en este caso es ligeramente más bajo, ess=1-0.748=0.252. Se observa claramente en la gráfica que el tiempo de levantamiento es menor después de la compensación, pero a costa de un sobrepaso mayor debido a un amortiguamiento menor.

Otra herramienta de Matlab más sofisticada para diseñar compensadores es SISO Design Tool. Se puede invocar mediante el comando rltool.

>> rltool

Se abre una interface para el diseño gráfico (GUI).

Una vez allí, podemos importar sistemas desde la consola de Matlab, mediante file>import>G>browse>available models>G>import>close>ok. De manera automática, el diseñador ofrece el lugar geométrico de las raíces del sistema:

Supongamos el requerimiento ζ=0.5. Colocando el cursor  sobre el lugar geométrico, hacemos click derecho y seleccionamos design requirement>new>design requirement type>damping ratio>0.5>ok. Obtenemos el gráfico siguiente:

La leyenda inferior la obtenemos colocando el curso sobre el punto rosado, se forma una mano y hacemos click izquierdo. Podemos variar el gráfico hasta lograr aproximadamente el damping deseado. Si colocamos el curso del lado izquierdo del gráfico (color blanco), aparece la leyenda Loop gain changed to 1.47. Es decir, Kp=1.47.

Aunque, para ser más exactos, el valor de la ganancia es de Kp=1.4663. Este valor lo podemos ver en la otra ventana que se abre simultáneamente con el Editor: Control and estimation tools manager. Allí, al seleccionar la pestaña Compensator Editor, podemos ver que C=1.4663. Por tanto, la herramienta nos permite ser mucho más específicos en cuanto al valor de la ganancia.

Volviendo al editor gráfico (SISO design task), seleccionando analysis>response to step command, obtenemos la respuesta al escalón unitario en una nueva ventana. Una vez allí, haciendo click derecho podemos seleccionar el tipo de gráfica con plot type>step. Podemos comprobar los valores de la respuesta transitoria obtenidos para Kp=1.46 si seleccionamos la característica que nos interesa calcular mediante:

characteristics>rise time

characteristics>peak response

Respuesta transitoria para diferentes valores de Kp.

Para completar el estudio sólo queda adjudicar varios valores a Kp y analizar la respuesta transitoria así como el error en estado estable de los diferentes sistemas que resulten, mediante las herramientas de programación presentadas hasta ahora. Cabe resaltar lo sensible que es el sistema para valores de Kp  muy cercanos. Ello se muestra en la siguiente gráfica donde de manera simultánea aparecen las respuestas a la entrada escalón unitario para diferentes valores de Kp:

Kp=0.2, Kp=0.5, Kp=1, Kp=1.5,  Kp=1.7, Kp=2.

null

Veremos mediante el siguiente estudio que, a diferencia de la acción integral, la acción proporcional ofrece un rango muy amplio para seleccionar la ganancia del controlador.

Respuesta al escalón unitario para varios valores de Kp

SIGUIENTE: PID – Estudio de la acción integral

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Atención:Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital y le brindo una video-conferencia para explicarle la solución…incluye además simulación en Matlab.

Relacionado:

Respuesta Transitoria de un Sistema de Control

Estabilidad de un sistema de control

Simulación de Respuesta Transitoria con Matlab – Introducción

 

 

Análisis de sistemas de control, PID

PID – Diseño con el controlador PD (Proporcional-Diferencial)

Configuración del controlador.

El PID es uno de los controladores más ampliamente utilizados en los esquemas de compensación siguientes, algunas de las cuáles se ilustran en la Figura 10-2:

  1. Compensación en serie (cascada),
  2. Compensación mediante realimentación,
  3. Compensación mediante realimentación de estado,
  4. Compensación en serie-realimentada,
  5. Compensación prealimentada,

En general, la dinámica de un proceso lineal controlado puede representarse mediante el diagrama de la Figura 10-1.

El objetivo de diseño es que las variables controladas, representadas por el vector de salida y(t), se comporten de cierta forma deseada. El problema esencialmente involucra el determinar la señal de control u(t) dentro de un intervalo prescrito para que todas las especificaciones de diseño sean satisfechas (ver Estabilidad de un sistema de control, Respuesta transitoria, Error en estado estable).

El controlador PID aplica una señal al proceso de control mostrado en la Figura 10-1, que es una combinación proporcional, integral y derivada de las señal de actuación e(t). Debido a que estos componentes de la señal se pueden realizar y visualizar fácilmente en el dominio del tiempo, los controladores PID se diseñan comúnmente empleando métodos en el dominio del tiempo.

Después de que el diseñador ha seleccionado una configuración para el controlador, debe escoger además el tipo de controlador. En general, mientras más complejo el controlador, más costoso, menos confiable y más difícil de diseñar. Por ende, en la práctica se selecciona el tipo de controlador más simple que permita cumplir con las especificaciones de diseño, lo que involucra experiencia, intuición, arte y ciencia.

Las componentes integral y derivativo de un controlador PID tienen una implicación individual en el desempeño, y sus aplicaciones requieren un entendimiento de las bases de estos elementos. Por ello, se consideran por separado, iniciando con la porción PD.

Diseño con el controlador PD

 

La Figura 10-3 muestra el diagrama de bloques de un sistema de control realimentado que deliberadamente tiene una planta prototipo de segundo orden con la siguiente función de transferencia Gp(s):null

El controlador en serie es del tipo proporcional-derivativo (PD) con la función de transferencia:null

Por lo tanto, la señal de control U(s) aplicada a la planta es:nullen donde Kp y Kd son las constantes proporcional y derivativa respectivamente, mientras E(s) es la señal de error. La realización del controlador PD mediante circuitos electrónicos se muestra en la Figura 10-4:

La función de transferencia del circuito de la Figura 10-4 es:nullAl comparar con la Figura 10-3:nullLa función de transferencia directa del compensador mostrado en la Figura 10-3 es:nulllo cual muestra que el control PD equivale a añadir un cero simple en s=-Kp/Kd a la función de transferencia directa. El efecto de control PD sobre la respuesta transitoria de un sistema de control se puede investigar al referirse a la respuesta en tiempo del sistema como se muestra en la Figura 10-5:

Se supone que la respuesta al escalón unitario de un sistema estable con el control proporcional es solamente como la que se presenta en la Figura 10-5(a). Se observa un sobrepaso máximo relativamente grande y un poco oscilatorio. La señal de error e(t) correspondiente, que es la diferencia entre la entrada r(t) escalón unitario y la salida y(t), y la derivada de dicho error en el tiempo, se muestran en las Figuras (b) y (c) respectivamente.

Durante el intervalo 0<t<t1, la señal de error es positiva, el sobrepaso es grande y se observa gran oscilación en la salida debido a la falta de amortiguamiento en este período. Durante el intervalo t1<t<t2, la señal de error es negativa, la salida se invierte y tiene un sobrepaso negativo. Este comportamiento se alterna sucesivamente hasta que la amplitud del error se reduce con cada oscilación, y la salida se establece eventualmente en su valor final. Se observa que el controlador PD puede añadir amortiguamiento a un sistema y reduce el sobrepaso máximo, pero no afecta el estado estable directamente.

Ejemplo. 

Para apreciar mejor el efecto del controlador PD, veamos el siguiente ejemplo. Supongamos que tenemos el sistema de la Figura 7-23.

null

La función de transferencia directa G(s) de este sistema viene dada por la siguiente expresión:null

Donde K es la constante del preamplificador.

Las especificaciones de diseño para este sistema son las siguientes:

nullDonde:

  • ess: Error en estado estable debido a una entrada de rampa unitaria
  • Mp: Sobrepaso máximo
  • Tr: Tiempo de levantamiento
  • Ts: Tiempo de asentamiento
  1. Selección del valor de K

Lo primero que vamos a hacer es hallar K para cumplir con el primer requerimiento de diseño, error en estado estable ess debido a una entrada rampa:

(Para repasar el concepto de error en estado estable ver Error en estado estable de un sistema de control)

1.a Hallar la constante de velocidad Kv porque es la relacionada a una entrada rampa:

null

1.b Hallar ess en función de K:

null

1.c Hallar para ess=0.000433:

null

Con este valor de K, la función de transferencia directa G(s) es:

null

2. Cálculo de sobrepaso

Veamos ahora como queda el sobrepaso para el valor de K obtenido.

(Para un repaso del concepto de sobrepaso y la respuesta transitoria ver Respuesta Transitoria de un Sistema de Control)

2.a La función de transferencia de lazo cerrado Gce(s) es:

2.b Hallamos a partir de aquí el factor de amortiguamiento relativo ζ y la frecuencia natural del sistema ωn.

2.c Con estos valores, hallamos el sobrepaso máximo Mp:

En porcentaje:

Este valor supera la exigencia de la especificación, por lo que se considera insertar un controlador PD en la trayectoria directa del sistema con el fin de mejorar el amortiguamiento y ajustar el sobrepaso máximo a la especificación de diseño exigida, manteniendo sin embargo el error en estado estable en 0.000433.

3. Diseño en el dominio del tiempo del controlador PD

Añadiendo el controlador Gc(s) de la Figura 10-3 a la trayectoria directa del sistema aeronáutico, y asignando K=185.4503, la función de transferencia directa G(s) del sistema de control de posición de la aeronave es:

Mientras, la función de transferencia a lazo cerrado Gce(s) es:

Esta última ecuación muestra los efectos del controlador PD sobre la función de transferencia de lazo cerrado del sistema al cual se aplica:

  1. Añadir un cero en s=-Kp/Kd
  2. Incrementar el “término asociado al amortiguamiento”, el cual es el coeficiente de s en el denominador de Gce(s). Es decir, de 361.2 hasta 361.2 + 834526.56Kd

3.a Selección de Kp

Para asegurarnos de que se mantenga el error en estado estable para una entrada rampa de acuerdo con las especificaciones, evaluamos dicho error y seleccionamos un valor para Kp:

Al elegir Kp igual a uno, mantenemos el mismo valor para Kv que se tenía antes de añadir el controlador. Es decir, mantenemos el valor del error en estado estable para entrada rampa tal como lo exige la especificación de diseño. Entonces:null3.b Selección de Kd

De acuerdo con la ecuación de sobrepaso máximo:

El sobrepaso máximo depende del factor de amortiguamiento relativo ζ. La ecuación característica del sistema es:

null

Donde:

null

Deducimos la expresión para el factor de amortiguamiento relativo ζ:

null

Este resultado muestra claramente el efecto positivo de Kd sobre el amortiguamiento. Sin embargo, se debe resaltar el hecho de que la función de transferencia directa G(s) ya no representa un sistema prototipo de segundo orden, por lo que la respuesta transitoria también se verá afectada por el cero en s=-Kp/Kd.

Aplicaremos ahora el método del lugar geométrico de la raíces a la ecuación característica para examinar el efecto de variar Kd, mientras se mantiene constante el valor de Kp=1.

(Para un repaso ver El lugar geométrico de las raíces de un sistema de control – 1era. parte. El lugar geométrico de las raíces con Matlab)

Si deseamos obtener un Mp=5% tal y como se pide en las especificaciones de diseño, eso significa obtener un factor de amortiguamiento relativo igual a lo siguiente:null

null

La ecuación característica del sistema y su forma 1+G(s)H(s) son:null

Utilizando el siguiente comando en Matlab obtenemos el lugar geométrico de las raíces para G(s)H(s):

>> s=tf(‘s’)

>> sys=(834526.56*s)/(s^2+361.2*s+834526.56)

>> rlocus(sys)

null

La gráfica siguiente muestra como mejora el factor de amortiguamiento relativo ζ a medida que aumenta la ganancia Kd:

null

Mientras, en la gráfica siguiente se muestra que para lograr un factor de amortiguamiento relativo ζ=0.69 o mejor que ese, lo cual significa un sobrepaso menor de 5% como se especifica, es necesario tener una ganancia mínima Kd= 0.00108:

null

Sin embargo, antes de seleccionar un valor definitivo para Kd debemos observar el cumplimiento de los otros requerimientos de diseño.

3.c Evaluación de Tr y Ts según Kd y Kp calculados.

Analizamos a continuación el valor del tiempo de levantamiento Tr para el valor de ζ=0.69 , Kd= 0.00108 y Kp= 1,  utilizando la función de transferencia a lazo cerrado del sistema Gce(s)  y el gráfico de respuesta a la entrada escalón generado por el siguiente comando en Matlab:

>> s=tf(‘s’)

>>sys=(834526.56*(1+0.00108*s))/(s^2+(361.2+834526.56*0.00108)*s+834526.56)

sys =     (901.3 s + 8.345e05) / (s^2 + 1262 s + 8.345e05)

> step(sys)

null

Utilizando la gráfica para la salida C(t) del sistema a una entrada escalón para un valor determinado del factor de amortiguamiento relativo (ζ=0.69). Para hallar Tr, restamos los tiempos para los cuáles C(t)=0.9 C(t)=0.1:

null

La gráfica anterior nos permite determinar el valor de Tr para un valor de ζ=0.69 de la siguiente manera:

Podemos ver que este valor cumple con el requerimiento de que Tr≤0.005 s. Veamos ahora que pasa con Ts. Utilizando el criterio del 2% podemos calcular Ts mediante la siguiente fórmula:null

Así vemos que el factor de amortiguamiento ζ=0.69 genera un Ts que no cumple con la condición de un Ts menor o igual a 0.005 s. Sin embargo, aumentando Kd mejoramos ζ logrando satisfacer dicha condición. Para ser más específicos, despejamos ζ a partir del valor máximo aceptado para Ts:

null

Utilizamos nuevamente el lugar geométrico de las raíces para determinar el valor de Kd que se corresponde con el de ζ=0.8757:

null

Si el valor de Kd=0.00148 y mantenemos el valor de Kp=1, la función de transferencia directa es:null

Mientras, la función de transferencia a lazo cerrado del sistema en estudio es la siguiente:null

Para esta función de transferencia revisamos los valores de sobrepaso Mp y tiempo de levantamiento Tr para asegurarnos que cumplen con las especificaciones de diseño:null

null

null

Por tanto, el valor de Kd debe tener un valor mínimo de:

Y nuestro controlador PD puede tener entonces la siguiente función de transferencia:

ANTERIOR: PID – Efecto de las acciones de control Proporcional, Integral y Derivativo

SIGUIENTE: PID – Diseño con el controlador PI (Proporcional-Integral)

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Atención:

Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital y le brindo una video-conferencia para explicarle la solución…incluye además simulación en Matlab.

Relacionado:

Respuesta Transitoria de un Sistema de Control

Estabilidad de un sistema de control

Simulación de Respuesta Transitoria con Matlab – Introducción

Análisis de sistemas de control, PID

PID – Diseño con el controlador PI (Proporcional-Integral)

Configuración del controlador.

El PID es uno de los controladores más ampliamente utilizados en los esquemas de compensación siguientes, algunas de las cuáles se ilustran en la Figura 10-2:

  1. Compensación en serie (cascada),
  2. Compensación mediante realimentación,
  3. Compensación mediante realimentación de estado,
  4. Compensación en serie-realimentada,
  5. Compensación prealimentada,

En general, la dinámica de un proceso lineal controlado puede representarse mediante el diagrama de la Figura 10-1.

El objetivo de diseño es que las variables controladas, representadas por el vector de salida y(t), se comporten de cierta forma deseada. El problema esencialmente involucra el determinar la señal de control u(t) dentro de un intervalo prescrito para que todas las especificaciones de diseño sean satisfechas (ver Estabilidad de un sistema de control, Respuesta transitoria, Error en estado estable).

El controlador PID aplica una señal al proceso de control mostrado en la Figura 10-1, que es una combinación proporcional, integral y derivada de las señal de actuación e(t). Debido a que estos componentes de la señal se pueden realizar y visualizar fácilmente en el dominio del tiempo, los controladores PID se diseñan comúnmente empleando métodos en el dominio del tiempo.

Después de que el diseñador ha seleccionado una configuración para el controlador, debe escoger además el tipo de controlador. En general, mientras más complejo el controlador, más costoso, menos confiable y más difícil de diseñar. Por ende, en la práctica se selecciona el tipo de controlador más simple que permita cumplir con las especificaciones de diseño, lo que involucra experiencia, intuición, arte y ciencia.

Las componentes integral y derivativo de un controlador PID tienen una implicación individual en el desempeño, y sus aplicaciones requieren un entendimiento de las bases de estos elementos. Ya hemos tratado anteriormente la porción PD (PID – Diseño con el controlador PD (Proporcional-Diferencial)), ahora nos enfocamos en la porción PI.

Diseño con el controlador PI

En muchas ocasiones el controlador PD puede no ser suficiente para cumplir con las especificaciones de diseño a través del proceso de compensación. Procedemos ahora a estudiar la parte integral del controlador PID, que produce una señal proporcional a la integral con respecto al tiempo de la entrada del controlador. La Figura 10-15 muestra mediante una configuración en serie, un controlador PI que compensa un sistema de control para una planta prototipo de segundo orden.

null

La función de transferencia del controlador es:nullDonde Kp y Ki son las constantes proporcional e integral respectivamente. Mientras, la función de transferencia Gp(s) de la planta es:null

La función de transferencia directa G(s) del sistema compensado es:null

Se puede constatar que los efectos inmediatos de aplicar el controlador PI es agregar un cero simple en s=-Ki/Kp y agregar un polo simple en s=0 en la función de transferencia directa, elevando a tipo 2 el sistema, mejorando así el error en estado estable.Sin embargo, se deben seleccionar adecuadamente los valores de los parámetros Kp y Ki para evitar que el sistema pase a ser inestable. Este generalmente es el principal problema a resolver cuando se utiliza un controlador PI, seleccionar Kp y Ki para que la respuesta transitoria sea satisfactoria mientras se mejora el error en estado estable.

Cuando se diseña un controlador PI un método factible es la selección del cero s=-Ki/Kp para que esté localizado cerca del origen y lejos de los polos más significativos del sistema. Por ello los valores de Kp y Ki deben ser relativamente pequeños.

 Diseño electrónico de un PI   

Al diseñar un controlador PI con amplificadores operacionales, obtenemos el circuito de la Figura 10-16:

null
Figura 10-16

Donde:nullAl comparar esta última ecuación con la función de transferencia del PI, observamos que:null

Ejemplo

Para apreciar mejor el efecto del controlador PI, veamos el siguiente ejemplo. Supongamos que tenemos el sistema de la Figura 7-23.

null

La función de transferencia directa G(s) de este sistema viene dada por la siguiente expresión:null

Donde K es la constante del preamplificador.

Las especificaciones de diseño para este sistema son las siguientes:

nullDonde:

  • ess: Error en estado estable debido a una entrada parábola
  • Mp: Sobrepaso máximo
  • Tr: Tiempo de levantamiento
  • Ts: Tiempo de asentamiento

Lo primero que vamos a hacer es analizar el error en estado estable ess del sistema antes de compensar, y ver que tanto cumple o no con el primer requerimiento de diseño (Para un repaso de este tema ver: Error en estado estable de un sistema de control).

Para una entrada parabólica debemos trabajar con la constante de aceleración Ka:nullEsto significa un error infinito para una entrada parabólica:Para mejorar el error en estado estable incorporamos un controlador PI en la trayectoria directa del sistema, el cual ahora tendrá la siguiente función de transferencia:nullAl aumentar la tipología del sistema de tipo 1 a tipo 2 de inmediato mejoramos el error en estado estable. Ahora, el ess debido a la entrada parábola será una constante:null

Es decir:

Este ejercicio ya lo trabajamos con el controlador PD. Para ese caso seleccionamos un valor de K=181.17 (Ejemplo 1 – Diseño de un controlador PD (Proporcional-Diferencial) – Matlab)

Nos permitimos la libertad de considerar el mismo valor para K en este caso con el fin de mantener la respuesta transitoria bajo condiciones aceptables y conocidas al aplicar el PD del ejemplo 1. De ser necesario ajustaremos el valor de K más adelante. Podemos apreciar que para lograr un ess según se especifica en el diseño, mientras más grande sea K, más pequeño tendrá que ser Ki, algo que puede ser conveniente. Con los valores de y ess podemos calcular un primer valor aproximado de Ki para cumplir con los requerimientos:

Lo siguiente que haremos será analizar la estabilidad del sistema debido a que de ello depende enormemente la selección de los parámetros Kp y Ki. Aplicaremos el criterio de Routh-Hurwitz (para un repaso ver Estabilidad de un sistema de control) para calcular los valores límites de los mencionados parámetros de manera tal que el sistema permanezca estable. Para ello requerimos de la ecuación característica que surge de la función de transferencia del sistema en lazo cerrado Gce(s):

null

La ecuación característica del sistema es:

null

Con esta ecuación aplicamos el criterio de Routh-Hurwitz. De esta manera descubrimos que el sistema es estable para el siguiente rango de valores:

null

Este resultado indica que el Ki/Kp del controlador no puede estar muy cerca del cero, por lo que no resulta conveniente un valor tan bajo tal como Ki=0.002215. Otro criterio para seleccionar Ki/Kp es que resulta conveniente seleccionar el cero añadido por el controlador en s=-Ki/Kp para que esté localizado cerca del origen y lejos de los polos más significativos del sistema. Mediante el lugar geométrico de las raíces en Matlab podemos ver cuáles son los polos más significativos de la ecuación característica, suponiendo una relación aceptable entre los parámetros Ki y Kp desde el punto de vista del estudio de estabilidad anterior pero relativamente cerca del origen, digamos Ki/Kp=10, manteniendo Ki constante y variando Kp (Para un repaso del tema ver: El lugar geométrico de las raíces con Matlab) Primero, arreglamos la ecuación característica en su forma 1+G(s)H(s):

Notar que de esta manera el controlador PI está añadiendo un zero en s=-10.

Aplicamos el siguiente comando en Matlab para obtener el lugar geométrico de las raíces de este sistema compensado:

>> s=tf(‘s’)

>> sys=(815265*(s+10))/(s^3+361.2*s^2)

>> rlocus(sys)

Y obtenemos:

Como se puede observar, el polo más significativo de la ecuación característica está ubicado en s=-361. Por tanto, el criterio que debemos utilizar para seleccionar s=-Ki/Kp es:nullCon este resultado, la función de transferencia directa G(s):nullQuedaría simplificada como:null

El término Ki/Kp sería despreciable comparado con la magnitud de s cuando s asume valores a lo largo del lugar geométrico de las raíces que se corresponde con un factor de amortiguamiento relativo conveniente de 0.7<ζ< 0.1. Luego, un zero en cero anula un polo en cero. El sobrepaso máximo debe ser igual o menor al 5%. Esto significa que se desea un factor de amortiguamiento relativo ζ aproximado al siguiente valor:

null

null

Con la ayuda del lugar geométrico podemos ubicar los polos que se corresponden con este valor de ζ:

De acuerdo con la gráfica, el valor de Kp requerido para obtener este factor de amortiguamiento es:

Y por tanto:

También observamos en la gráfica anterior que si Kp=0.0838, entonces las raíces de la ecuación característica (los polos del sistema) están en s1=-175+j184 y en s2=-175-j184 Si miramos alrededor de esas raíces podemos notar que el zero añadido por el controlador en s=-10 está muy cerca del origen comparado con los polos de s1 y s2, prácticamente cancelando un polo en el origen, ratificando así la aproximación que hicimos anteriormente para la función de transferencia directa de este sistema luego de la compensación:

Así:

Podemos observar la respuesta del sistema al escalón unitario de acuerdo con estos resultados parciales y la comparación de los sistemas compensado y sin compensar, mediante la siguiente simulación:

>> Ga=(815265)/(s*(s+361.2))

>> Gd=(68319)/(s*(s+361.2))

>> Gce1=feedback(Ga,1)

>> Gce2=feedback(Gd,1)

>> step(Gce1,Gce2)

La gráfica anterior, con el sistema después de la compensación en línea roja, muestra que el PI mejora el error en estado estable y reduce el sobrepaso, pero a expensas de aumentar significativamente el tiempo de levantamiento. La gráfica también nos muestra que el sobrepaso máximo es de 5%, por tanto se cumple el requerimiento. Es necesario notar que se puede seleccionar otra relación para Ki y Kp que cumpla con el requerimiento y aún mejoren el sobrepaso, por ejemplo Ki/Kp=5, Ki/Kp=2. Sólo hay que prestar atención al tema de la estabilidad del sistema. Con los valores calculados, volvemos a calcular el sobrepaso, y vemos como quedan el tiempo de levantamiento tr y el tiempo de asentamiento ts. El siguiente comando nos facilita el valor de ζ y ωn, el factor de amortiguamiento relativo y la frecuencia natural respectivamente (Para un repaso ver:Respuesta Transitoria de un Sistema de Control).

>> damp(Gce2)

Pole: -1.81e+02 + 1.89e+02i /   -1.81e+02 + 1.89e+02i

Damping: 6.91e-01

Frequency: 2.61e+02

  •  Máximo Sobrepaso (MP):

  • Tiempo de levantamiento (Tr):

>> Gd=(68319)/(s*(s+361.2))

>> sys=feedback(Gd,1)

>> step(sys)

  • Tiempo de asentamiento (Ts):null

Cosa que también podemos constatar en la gráfica de respuesta al escalón unitario generada anteriormente:

Podemos concluir que el sistema compensado cumple con los requerimientos del diseño, aunque se sobrepasa un poco en el tiempo de asentamiento. Este último se puede reducir levemente con una relación Ki/Kp=2pero a expensas de acercarse demasiado a la zona inestable del sistema.

ANTERIOR: PID – Diseño con el controlador PD (Proporcional-Diferencial)

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Atención:

Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital y le brindo una video-conferencia para explicarle la solución…incluye además simulación en Matlab.

Relacionado:

Respuesta Transitoria de un Sistema de Control

Estabilidad de un sistema de control

Simulación de Respuesta Transitoria con Matlab – Introducción

 

 

Análisis de sistemas de control, PID

Example 1 – PD Controller Design (Proportional-Diferential) – Matlab

To better appreciate the effect of the PD controller, let’s look at the following example. Suppose we have the system of Figure 7-23.

null

The direct transfer function G(s) for this system is as follows:

null

Where K is the pre-amplifier constant.

Teh design specifications for this system are:

nullWhere:

  • ess: steady-state error for a ramp input
  • Mp: Maximum Overshoot
  • Tr: Rise time
  • Ts: settling time
  1. Selection of K

The first thing we are going to do is to find out K to meet the first design requirement,  ess:

1.a Find the speed constant Kv:null

1.b Determine ess as a function of K:null

1.c Get K:null

With the value of K, the direct transfer function G(s) is:null

2. Overshoot

2.a The closed-loop transfer function Gce(s) is:

2.b From here we find the damping ζ and the natural frequency ωn.

2.c Determine Mp:This value exceeds the requirement of the specification, so it is considered to insert a PD controller in the direct path of the system in order to improve the damping and adjust the maximum overshoot to the required design specification, maintaining however the error in state stable at 0.000433.

3. Design of the PD controller in time domain

From Figure 10-3

null

and K=185.4503,  the direct transfer function G(s) is:

While, the closed-loop transfer function Gce(s) is:

This last equation shows the effects of the PD controller on the closed loop transfer function of the system to which it is applied:

  1. Add a zero in s=-Kp/Kd
  2. Increase the “term associated with damping”, from 361.2 to 361.2 + 834526.56Kd

3.a Selection of Kp

To ensure that the error is maintained in steady-state for a ramp input according to the specifications, we evaluate that error and select a value for Kp:

When choosing Kp equal to one, we keep the same value for Kv that we had before adding the controller. That is, we keep the error value in steady-state for a ramp input as required by the design specification. So:
null3.b Selection of Kd

According to the equation for maximum overshoot:the maximum overshoot depends on the damping ζ. The characteristic equation of the system is:nullWhere:nullWe deduce the expression for the damping factor ζ:

nullThis result clearly shows the positive effect of Kd on the damping. However, it should be noted that the direct transfer function G (s) no longer represents a second-order prototype system, so the transient response will also be affected by zero in s=-Kp/Kd.

We will now apply the root locus method to the characteristic equation to examine the effect of varying Kd, while keeping the value of Kp = 1.

If we want to obtain an Mp = 5% as requested in the design specifications, that means obtaining a damping factor equal to the following:
null

null

The characteristic equation and its form 1+G(s)H(s) are:null

Using the following command in Matlab we obtain the locus of the roots for G(s)H(s):

>> s=tf(‘s’)

>> sys=(834526.56*s)/(s^2+361.2*s+834526.56)

>> rlocus(sys)

null

The following graph shows how the damping factor ζ improves as the gain Kd increases:

null

Meanwhile, the following graph shows that to achieve a damping factor ζ = 0.69 or better than that, which means an overshoot of less than 5% as specified, it is necessary to have a minimum value for the gain Kd= 0.00108:

null

However, before selecting a final value for Kd, we must observe compliance with the other design requirements.

3.c Evaluation 0f Tr and Ts according to the calculated values for Kd and Kp.

We then analyze the value of the rise time Tr for the value of ζ = 0.69, Kd = 0.00108 and Kp = 1, using the closed-loop transfer function and the graph generated by a step input  in Matlab:

>> s=tf(‘s’)

>>sys=(834526.56*(1+0.00108*s))/(s^2+(361.2+834526.56*0.00108)*s+834526.56)

sys =     (901.3 s + 8.345e05) / (s^2 + 1262 s + 8.345e05)

> step(sys)

null

To find Tr, we subtract the times for which C(t)=0.9 C(t)=0.1:

null

The previous graph allows us to determine the value of Tr for a value of ζ = 0.69 in the following way:

We can see that this value complies with the requirement of Tr≤0.005 s. Let’s see what happens with Ts. Using 2% criteria:null

We can see that the value of the damping ζ = 0.69 does not meet the condition of a Ts less than or equal to 0.005 s, but we can get it by increasing Kd. To be more specific, we clear ζ from the maximum accepted value for Ts:

null

We use again the locus of the roots to determine what value of Kd corresponds to that of ζ = 0.8757:

null

If the value of Kd=0.00148 and we keep Kp=1, the direct transfer funcion of the flight system is:null

Meanwhile, the closed-loop transfer function of the system under study is the following:
null

For this transfer function we review the values of maximum overshoot Mp and rise time Tr to ensure that they meet the design specifications:
null

null

null

So, the value for Kd is at minimum:

And the PD controller can has the following transfer funtion:

Using the following Matlab command, we now proceed to graph the system response before and after adding the PD controller:

>> s=tf(‘s’)

>> G1=(834526.56)/(s*(s+361.2))

>>sys1=feedback(G1,1)

>> G2=(834526.56*(1+0.00148*s))/(s*(s+361.2))

>> sys2=feedback(G2,1)

>> step(sys1,sys2)

In the previous graph the response to the step before placing the PD controller is represented by the blue curve, while the same response after placing the controller is in red. The improvement of the damping is seen since the maximum overshoot is markedly reduced and the rise time is improved.

 

Made by: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Electronic Engineer, PID

PID – Efecto de las acciones de control Proporcional, Integral y Derivativo

ANTERIOR: PID -Acciones básicas de sistemas de control.

SIGUIENTE: PID – Diseño y configuración del controlador 

En esta sección, investigaremos los efectos de las acciones de control proporcional, integral y derivativo en el rendimiento del sistema. Aquí consideraremos sólo los sistemas simples para que se puedan ver claramente los efectos de las acciones de control en el rendimiento del sistema.

Acción de control proporcional

En este momento vamos a mostrar que con un control puramente proporcional, siempre habrá un error en estado estable, denominado offset, para una entrada escalón unitario. Luego, demostraremos que añadiendo un integrador en la Función de Transferencia directa del sistema, podremos eliminar dicho error. Esta es la misión fundamental de un control PI.

Considere el sistema que se muestra en la Figura 5-40.

La Función de Transferencia directa de este sistema es:

Vamos a obtener el error de estado estable de este sistema para una entrada escalón unitario. Ya que:

El error E(s) está dado por:

Para una entrada escalón unitario R(s) = 1/s, obtenemos:

El error en estado estable es:

Este resultado demuestra que tal sistema, sin un integrador en la ruta de alimentación directa, siempre  presentará un error en estado estacionario, denominado Offset, en respuesta a la entrada escalón unitario.

La Figura 5-41 muestra la respuesta del sistema con control proporcional sin integrador en la Función de Transferencia directa, a una entrada escalón unitario:

Acción de control integral.

Como se señalaba antes, en el control de una planta cuya función de transferencia  no posee un integrador 1 / s, se presenta un error en estado estable (offset) en respuesta a una entrada escalón unitario. Tal error se puede eliminar si la acción de control integral está incluida en el controlador. La función principal de la acción integral es asegurarse que la salida del proceso coincide con la señal de referencia en estado estacionario, cosa que se demuestra a continuación.

Considere el sistema que se muestra en la Figura 5-42.

La función de transferencia directa del sistema anterior es:

Utilizando el mismo razonamiento utilizado para analizar el error del sistema con control proporcional, el error E(s) es:

Suponiendo una entrada escalón unitario:

Aplicando nuevamente el teorema del valor final, determinamos el error en estado estable para una entrada escalón unitario:

Este resultado demuestra que el control integral del sistema elimina así el error de estado estacionario en la respuesta a la entrada escalón unitario. Esta es una mejora importante que se puede sumar al control proporcional para evitar el Offset.

La señal de control u(t) generada por un controlador integral, puede tener un valor distinto de cero cuando la señal de error actuante e(t) es cero, como se muestra en la Figura 5-39 (a). Esto es imposible en el caso del controlador proporcional, como se muestra en la Figura 5-39 (b). Con acción integral, un pequeño error positivo conducirá siempre a una señal de control creciente, y un error negativo dará una señal de control decreciente sin tener en cuenta lo pequeño que sea el error.

Hay que tener en cuenta que la acción de control integral, al eliminar el Offset o el error de estado estable, puede conducir a una respuesta oscilatoria de amplitud decreciente o incluso a una amplitud creciente, ambas de las cuales son por lo general indeseables. Por ello se acostumbra combinarlo con los otros tipos de control.

Acción de control derivativo. 

La acción de control derivativo, cuando se agrega a un controlador proporcional, concede un medio para obtener un controlador con alta sensibilidad que responde a la velocidad de cambio del error y puede producir una corrección significativa antes de que la magnitud del error sea demasiado grande. En otras palabras, mejora el amortiguamiento, reduce el sobrepaso en estado estacionario. El control derivado anticipa, pues, el error de accionamiento, inicia una acción correctiva temprana y tiende a aumentar la estabilidad del sistema.

Para ver los efectos de un controlador PD, recomiendo ver: Ejemplo 1 – Diseño de un controlador PD (Proporcional-Diferencial)

Aunque el control derivado no afecta directamente al error de estado estacionario, agrega amortiguación al sistema y, por lo tanto, permite el uso de un valor mayor de la ganancia K del controlador proporcional, lo que dará como resultado una mejora indirecta en la precisión del estado estable.

Debido a que el control derivativo opera en la tasa de cambio del error de actuación y no en el error de actuación en sí, este modo nunca se usa solo. Siempre se usa en combinación con una acción de control proporcional o proporcional más integral

Control proporcional de sistemas con carga de inercia.

Antes de discutir el efecto de la acción de control derivativo sobre el rendimiento del sistema, consideraremos el control proporcional de una carga inercial (carga con momento de inercia J).

Considere el sistema que se muestra en la figura 5-46 (a).

La función de transferencia directa es:

La función de transferencia de lazo cerrado se obtiene mediante:

La ecuación característica es:

Como las raíces de la ecuación característica son imaginarias, la respuesta a una entrada escalón unitario continúa oscilando indefinidamente, como muestra la Figura 5-46(b). Los sistemas de control que exhiben tales características de respuesta no son deseables. Veremos que la adición de control derivado estabilizará el sistema.

Control Proporcional-Derivativo de un Sistema con Carga Inercial.

Modifiquemos el controlador proporcional añadiendo un controlador derivativo, cuya función de transferencia es Kp (1 + Tds). El control derivativo es esencialmente anticipatorio, mide la velocidad de error instantánea y predice un sobrepaso con anticipación. Produce una neutralización adecuada antes de que ocurra un sobrepaso demasiado grande.

Considere el sistema que se muestra en la figura 5-47 (a).

La función de transferencia a lazo cerrado de este sistema es:

La ecuación característica es:

 Ahora la ecuación característica tiene dos raíces con partes reales negativas para valores positivos de J, Kp y Td. Así, el control derivativo introduce un efecto de amortiguación. Una curva de respuesta típica c(t) a un escalón unitario en la la entrada, se muestra en la Figura 5-47 (b). Claramente, la curva de respuesta en este caso muestra una marcada mejora con respecto a la curva de respuesta original que se muestra en la Figura 5-46 (b).

Para ver los efectos de un controlador PD, recomiendo ver: Ejemplo 1 – Diseño de un controlador PD (Proporcional-Diferencial)

SIGUIENTE: PID – Diseño y configuración del controlador 

ANTERIOR: PID -Acciones básicas de sistemas de control.

Fuentes:

  1. Control PID Avanzado
  2. Modern_Control_Engineering, Ogata 4t

 

Escrito por Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463

+593998524011

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Electronic Engineer, PID, PID Control

PID – Acciones Básicas de Sistemas de Control

ANTERIOR: Error en estado estable de un sistema de control

SIGUIENTE: PID – Efecto de las acciones de control Integral y Derivativo

Introducción

Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina la desviación y produce una señal de control que reducirá la desviación a cero o a un valor pequeño. La manera en la cual el controlador automático produce la señal de control se denomina acción de control.

Clasificación de los controladores industriales.

De acuerdo con sus acciones de control, los controladores industriales se clasifican en:

  1. De dos posiciones o de encendido y apagado (On/Off)
  2. Proporcionales
  3. Integrales
  4. Proporcionales-Integrales (PI)
  5. Proporcionales-Derivativos (PD)
  6. Proporcionales-Integrales-Derivativos (PID)

Casi todos los controladores industriales emplean como fuente de energía la electricidad o un fluido presurizado, tal como el aceite o el aire. Los controladores también pueden clasificarse, de acuerdo con el tipo de energía que utilizan en su operación, como neumáticos, hidráulicos o electrónicos. El tipo de controlador que se use debe decidirse con base en la naturaleza de la planta y las condiciones operacionales, incluyendo consideraciones tales como seguridad, costo, disponibilidad, confiabilidad, precisión, peso y tamaño.

La Figura 5-1 muestra la configuración típica de un Sistema de Control Industrial:

La figura anterior consiste en un Diagrama de Bloques para un sistema de control industrial compuesto por un controlador automático, un actuador, una planta y un sensor (elemento de medición). El controlador detecta la señal de error, que por lo general, está en un nivel de potencia muy bajo, y la amplifica a un nivel lo suficientemente alto. La salida de un controlador automático alimenta a un actuador que puede ser una válvula neumática o un motor eléctrico. El actuador es un dispositivo de potencia que produce la entrada para La planta de acuerdo con la señal de control, a fin de que la señal de salida se aproxime a la señal de entrada de referencia. El sensor, o elemento de medición, es un dispositivo que convierte la variable de salida, tal como un desplazamiento, en otra variable manejable, tal como un voltaje, que pueda usarse para comparar la salida con la señal de entrada de referencia. Este elemento está en la trayectoria de realimentación del sistema en lazo cerrado. El punto de ajuste del controlador debe convertirse en una entrada de referencia con las mismas unidades que la señal de realimentación del sensor o del elemento de medición.

Acción de control de dos posiciones o de encendido y apagado (on/off).

En un sistema de control de dos posiciones, el elemento de actuación sólo tiene dos posiciones fijas que, en muchos casos, son simplemente encendido y apagado. El control de dos posiciones o de encendido y apagado es relativamente simple y barato, razón por la cual su uso es extendido en sistemas de control tanto industriales como domésticos.

Supongamos que la señal de salida del controlador es u(t) y que la señal de error es e(t). En el control de dos posiciones, la señal u(t) permanece en un valor ya sea máximo o mínimo, dependiendo de si la señal de error es positiva o negativa. De este modo,

donde U1 y U2 son constantes. Por lo general, el valor mínimo de U2 es cero ó U1.

Es común que los controladores de dos posiciones sean dispositivos eléctricos, en cuyo caso se usa extensamente una válvula eléctrica operada por solenoides. Los controladores neumáticos proporcionales con ganancias muy altas funcionan como controladores de dos posiciones y, en ocasiones, se denominan controladores neumáticos de dos posiciones.

Las Figuras 5-3(a) y (b) muestran los diagramas de bloques para dos controladores de dos posiciones. El rango en el que debe moverse la señal de error antes de que ocurra la conmutación se denomina brecha diferencial. En la Figura 5-3(b) se señala una brecha diferencial. Tal brecha provoca que la salida del controlador u(t) conserve su valor presente hasta que la señal de error se haya desplazado ligeramente más allá de cero. En algunos casos, la brecha diferencial es el resultado de una fricción no intencionada y de un movimiento perdido; sin embargo, con frecuencia se provoca de manera intencional para evitar una operación demasiado frecuente del mecanismo de encendido y apagado.

Acción de control proporcional. 

Para un controlador con acción de control proporcional, la relación entre la salida del controlador u(t) y la señal de error e(t) es:

o bien, en cantidades transformadas por el método de Laplace:

donde Kp se considera la ganancia proporcional.

Cualquiera que sea el mecanismo real y la forma de la potencia de operación, el controlador proporcional es, en esencia, un amplificador con una ganancia ajustable. En la figura 5-6 se presenta un diagrama de bloques de tal controlador.

Para ver los efectos de aplicar un bloque proporcional a un sistema de control, ver: PID – Estudio de la acción proporcional con Matlab

Acción de control integral. 

En un controlador con acción de control integral, el valor de la salida del controlador u(t) se cambia a una razón proporcional a la señal de error e(t). Es decir,

o bien:

en donde Ki es una constante ajustable. La función de transferencia del controlador integral es:

Si se duplica el valor de e(t), el valor de u(t) varía dos veces más rápido. Para un error de cero, el valor de u(t) permanece estacionario. En ocasiones, la acción de control integral se denomina control de reajuste (reset). La Figura 5-7 muestra un diagrama de bloques de tal controlador.

Para ver los efectos de aplicar un bloque integrador a un sistema de control, ver: PID – Estudio de la acción integral con Matlab

Acción de control integral-proporcional. 

La acción de control de un controlador proporcional-integral (PI) se define mediante:

null

o la función de transferencia del controlador, la cual es:

null

en donde Kp es la ganancia proporcional y Ti se denomina tiempo integral. Tanto Kp como Ti son ajustables. El tiempo integral ajusta la acción de control integral, mientras que un cambio en el valor de Kp afecta las partes integral y proporcional de la acción de control.

El inverso del tiempo integral Ti se denomina velocidad de reajuste. La velocidad de reajuste es la cantidad de veces por minuto que se duplica la parte proporcional de la acción de control. La velocidad de reajuste se mide en términos de las repeticiones por minuto. La Figura 5-8(a) muestra un diagrama de bloques de un controlador proporcional más integral. Si la señal de error e(t) es una función escalón unitario, como se aprecia en la Figura 5-8(b), la salida del controlador u(t) se convierte en lo que se muestra en la Figura 5-8(c).

null

null

null

Para ver un ejemplo de diseño de un controlador PI, ver: Ejemplo 1 – Diseño de un controlador PI (Proporcional-Integral) – Matlab

Acción de control proporcional-derivativa (PD)

La acción de control de un controlador proporcional-derivativa (PD) se define mediante:

null

la función de transferencia es:

null

en donde Kp es la ganancia proporcional y Td es una constante denominada tiempo derivativo. Tanto Kp como Td son ajustables. La acción de control derivativa, en ocasiones denominada control de velocidad, ocurre donde la magnitud de la salida del controlador es proporcional a la velocidad de cambio de la señal de error. El tiempo derivativo Td es el intervalo de tiempo durante el cual la acción de la velocidad hace avanzar el efecto de la acción de control proporcional.

La Figura 5-9(a) muestra un diagrama de bloques de un controlador PD. Si la señal de error e(t) es una función rampa unitaria como se aprecia en la Figura 5-9(b), la salida del controlador u(t) se convierte en la que se muestra en la Figura 5-9(c). La acción de control derivativa tiene un carácter de previsión. Sin embargo, es obvio que una acción de control derivativa nunca prevé una acción que no ha ocurrido.

null

null

null

Aunque la acción de control derivativa tiene la ventaja de ser de previsión, tiene las desventajas de que amplifica las señales de ruido y puede provocar un efecto de saturación en el actuador. Observe que la acción de control derivativa no se usa nunca sola, debido a que sólo es eficaz durante periodos transitorios.

Para ver un ejemplo de diseño de un controlador PD, ver: Ejemplo 1 – Diseño de un controlador PD (Proporcional-Diferencial)

Acción de control proporcional-Integral-derivativa (PID)

La combinación de una acción de control proporcional, una acción de control integral y una acción de control derivativa se denomina acción de control proporcional-integral-derivativa (PID). 

Esta acción combinada tiene las ventajas de cada una de las tres acciones de control individuales. La ecuación de un controlador con esta acción combinada se obtiene mediante:

null

la función de transferencia es:

null

en donde Kp es la ganancia proporcional, Ti es el tiempo integral y Td es el tiempo derivativo. El diagrama de bloques de un controlador PID aparece en la figura 5-10(a). Si e(t) es una función rampa unitaria, como la que se observa en la Figura 5-10(b), la salida del controlador u(t) se convierte en la de la Figura 5-10(c).

null

nullnull

 

Efectos del sensor sobre el desempeño del sistema.

Dado que las características dinámica y estática del sensor o del elemento de medición afecta la indicación del valor real de la variable de salida, el sensor cumple una función importante para determinar el desempeño general del sistema de control. Por lo general, el sensor determina la función de transferencia en la trayectoria de realimentación. Si las constantes de tiempo de un sensor son insignificantes en comparación con otras constantes de tiempo del sistema de control, la función de transferencia del sensor simplemente se convierte en una constante. Las Figuras 5-11(a), (b) y (c) muestran diagramas de bloques de controladores automáticos con un sensor de primer orden, un sensor de segundo orden sobreamortiguado y un sensor de segundo orden subamortiguado, respectivamente. Con frecuencia la respuesta de un sensor térmico es del tipo de segundo orden sobreamortiguado.

null

null

ANTERIOR: Error en estado estable de un sistema de control

SIGUIENTE: PID – Efecto de las acciones de control Integral y Derivativo

Fuente:

  1. Ingenieria de Control Moderna, 3° ED. – Katsuhiko Ogata,

 

Revisión hecha por Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emrpesarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011

email: dademuchconnection@gmail.com