Análisis de sistemas de control, Señales y Sistemas

La Función de Transferencia

La Función de Transferencia H(s) es el cociente formado por Y(s), la Transformada de Laplace de la salida de un sistema LTI (Causal, Lineal e Invariante en el tiempo), dividida entre X(s), la Transformada de Laplace de la entrada a dicho sistema, cuando las condiciones iniciales son iguales a cero en el tiempo t=0 :Dónde:Observación: La Función de Transferencia sólo se expresa como una función de la variable compleja s. Para obtenerla, es necesario que las condiciones iniciales sean nulas. De no serlo, se debe obligar a dichas condiciones a ser cero.

Observación: Conociendo la Función de Transferencia H(s) de un sistema, podemos conocer la salida y(t) en el dominio del tiempo para cualquier entrada x(t), aplicando los siguientes pasos:

Veremos un par de comandos en Matlab que ilustran este importante resultado.

Observación: La Función de Transferencia es una propiedad intrínseca del sistema, no depende del tipo o naturaleza de la entrada o excitación.

Observación: La Función de Transferencia no ofrece información sobre las características físicas del sistema. De hecho, sistemas con diferentes estructuras, dimensiones o distribuciones físicas pueden tener la misma Función de Transferencia.

Observación: La Función de Transferencia es una parte importante del primer paso necesario para el diseño y análisis de sistemas de control: el modelo matemático del sistema.

Observación: La Función de Transferencia H(s) de un sistema LTI también se puede definir como la Transformada de Laplace de la Respuesta al Impulso, con todas las condiciones iniciales iguales a cero. Suponiendo que la respuesta del sistema al impulso se denota como h(t), entonces:

La Función de Transferencia se obtiene a partir  de la representación de un sistema LTI por medio de ecuaciones diferenciales con coeficientes constantes, el modelo dinámico del sistema.  Se hace uso intensivo de la propiedad de La Transformada de Laplace definida como “derivación n-ésima de una función en el dominio del tiempo”. Dicha propiedad sirve de fundamento para el método que permite separar algebraicamente la salida de la entrada, y obtener la Función de Transferencia.

Ejemplo.

Hallar la Función de Transferencia X(s)/P(s) del siguiente sistema mecánico:

Para obtener la ecuación diferencial que describe el comportamiento dinámico de este sistema, aplicamos la Ley de Newton:

Suponiendo las condiciones iniciales iguales a cero, y que se trata de un sistema lineal, causal e invariante en el tiempo (LTI), aplicamos superposición y determinamos las fuerzas que actúan sobre la masa m, así obtenemos:

Esta es la ecuación diferencial del sistema, su modelo matemático. Por ser un sistema LTI, los coeficientes de la ecuación son constantes. Se procede ahora a aplicar la Transformada de Laplace a esta ecuación. Sabemos de La Transformada de Laplace que la manera más práctica es actuar sobre cada término de la ecuación por separado:

Así la ecuación del sistema luego de aplicarle Laplace es:

que podemos expresar como:

con el fin de despejar y obtener la Función de Transferencia del sistema:

La Función de Transferencia y el Diagrama de Bloques.

La Función de Transferencia permite representar un sistema mediante una herramienta gráfica que muestra el flujo de información a través de todos los componentes del mismo: El diagrama de bloques.

En construcción…

 

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, email: dademuchconnection@gmail.com.

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

email: dademuchconnection@gmail.

Anuncios
Matemática aplicada - Appd Math, Señales y Sistemas, Sin categoría, Transformada de Laplace

Ejemplo 1: Transformada de Laplace de una función exponencial – Matlab

En general, La Transformada de Laplace de una función x(t) es:

Considere la señal exponencial x(t):

Donde a es un número real cualquiera y  u(t) es la función escalón unitario. La Transformada de Laplace de x(t) es:

Para evaluar el lado derecho es necesario determinar:

Este límite existe si solo si:

Por tanto:

Y:

La región de convergencia de la transformada X(s) es el conjunto de todos los números complejos tales que Re{s}>-a (Parte real de s es mayor que menos a). Nota: Dos señales distintas pueden tener la misma expresión algebraica cuando se le aplica la transformada de Laplace. Por tanto, cuando se especifica la transformada de Laplace de una señal, se requiere tanto la expresión algebraica como el intervalo de valores s para el cual esta expresión es válida. Lo correcto es expresar el resultado anterior de la siguiente manera: 

Observar que en el caso de que a=0, x(t) es simplemente la función escalón unitario, y por tanto se obtiene el importante resultado:

Cálculo de la Transformada de Laplace en Matlab 

Continuando con el caso x(t):

Symbolic Math Toolbox de Matlab calcula la Transformada de Laplace mediante el siguiente comando:

>> syms x a t
>> x=exp(-a*t);
>> X=laplace(x)

X =

1/(a + s)

De igual manera podemos calcular Laplace para la función escalón unitario mediante:

>> x=sym(1);
>> X=laplace(x)

X =

1/s

Teniendo la Transformada de Laplace X(s) podemos aplicar la antitransformada para obtener su equivalente en el dominio del tiempo:

>> X=1/(a + s)

>> x=ilaplace(X)

x =

exp(-a*t)

Por poner un caso más complicado, considere el siguiente ejemplo:

>> syms X s x
>> X=(s+2)/(s^3+4*s^2+3*s);

>> x=ilaplace(X)

x =

2/3 – exp(-3*t)/6 – exp(-t)/2

Además puedo graficar este resultado mediante:

>> ezplot(x,[0,10])

Referencias:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas

ANTERIOR: La Transformada de Laplace

Te puede interesar:

  1. Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador
  2. Ejemplo 1 – Función de Transferencia de Sistema Electromecánico
  3. Ejemplo 1 – Función de transferencia de un sistema de nivel de líquidos

Escrito por: Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Señales y Sistemas, Transformada de Laplace

La Transformada de Laplace

La Transformada de Laplace X(s) es la Transformada Continua de Fourier después de multiplicarla por una señal exponencial real decreciente. Es por ello que se considera una generalización de la Transformada de Fourier. La notación y la ecuación utilizadas para determinar la Transformada de Laplace son las siguientes:

Es decir, Laplace adapta la Transformada de Fourier para que pueda ser aplicada a un conjunto más amplios de señales para las cuáles no existe la Transformada de Fourier.

Bajo ciertas condiciones iniciales, La Transformada de Laplace nos permite visualizar el efecto que un sistema LTI (causal, lineal e invariante en el tiempo) tiene sobre cualquier señal de entrada a dicho sistema.

La Transformada de Laplace a partir de la Transformada de Fourier

Dada una señal de tiempo continuo x(t) se define la Transformada de Fourier X(ω) de x(t) como:

La ecuación (1) genera las componentes de frecuencia que forman la señal x(t). Para algunas señales de uso común en la ingeniería, esta integral no existe. Para resolver este inconveniente, se añade un factor de convergencia exponencial  e^-σt a la integral de la ecuación (1), donde sigma (σ) es un número real. De esa manera obtenemos:

La cual puede escribirse como:

Para ser más prácticos, hacemos:

Así podemos escribir la ecuación (3) como:

La ecuación (4) es conocida como La Transformada de Laplace de una señal general x(t).

La transformada de Laplace convierte las funciones expresadas en término de la variable real t  en funciones de una variable completamente diferente, la variable compleja s. Nos mueve desde el dominio del tiempo a lo que a menudo se denomina el dominio de frecuencia.

La Transformada de Laplace comparte las propiedades algebraicas de La Transformada de Fourier: transforman una señal en el tiempo en la suma de varias señales en frecuencia. De allí su enorme utilidad para determinar, por ejemplo, la salida de un sistema a partir de la ecuación diferencial que describe la dinámica de dicho sistema, aplicando La transformada de Laplace y el conjunto de propiedades que se definen a continuación.

Por otra parte, no es necesario calcular la integral de la ecuación (4) en la mayoría de los casos de interés científico ya que se dispone de tablas para determinar la Transformada de Laplace de dichos casos.

Ejemplo 1: La Transformada de Laplace de una función exponencial

Considere la señal x(t):

Donde a es un número real cualquiera y  u(t) es la función escalón unitario. Aplicando la ecuación (4), La Transformada de Laplace de x(t) es:

Para evaluar el lado derecho es necesario determinar:

Este límite existe si solo si:

Por tanto:

Y:

La región de convergencia de la transformada X(s) es el conjunto de todos los números complejos tales que Re{s}>-a (Parte real de s es mayor que menos a). Nota: Dos señales distintas pueden tener la misma expresión algebraica cuando se le aplica la transformada de Laplace. Por tanto, cuando se especifica la transformada de Laplace de una señal, se requiere tanto la expresión algebraica como el intervalo de valores s para el cual esta expresión es válida. Lo correcto es expresar el resultado anterior de la siguiente manera: 

Observar que en el caso de que a=0, x(t) es simplemente la función escalón unitario, y por tanto se obtiene el importante resultado:

Para realizar este cálculo mediante matlab ver: Ejemplo 1: Transformada de Laplace de una función exponencial – Matlab

Propiedades de la Transformada de Laplace

La Transformada de Laplace satisface un número de propiedades útiles en una gran variedad de aplicaciones. Las siguientes propiedades fundamentales permiten calcular sin necesidad de calcular la integral de la ecuación (4), la Transformada de Laplace de la mayoría de situaciones de interés para la ingeniería. Daremos algunos ejemplos de aplicación:

  1. Linealidad. La Transformada de Laplace es una operación lineal, por tanto:

Ejemplo:

  1. Desplazamiento en el tiempo por la derecha. Para cualquier número real positivo c:

Ejemplo: sea x(t) la función pulso rectangular en términos de la función escalón:

  1. Escalamiento en el tiempo. Para cualquier número real positivo a:

Ejemplo: sea x(t) la función escalón escalada en el tiempo:

  1. Multiplicación por una potencia de t. Para cualquier número entero positivo N:

Ejemplo: sea x(t) la función rampa unitaria:      5. Derivación en el dominio del tiempo.

La propiedad de derivación en el dominio del tiempo de la Transformada de Laplace es de suma importancia en el campo de la ingeniería ya que permite determinar la respuesta de un sistema LTI, o señal de salida y(t), a una entrada al sistema, o señal de excitación. Una vez determinada la Transformada de Laplace de la ecuación diferencial que representa la dinámica del sistema, se obtiene la expresión para la salida Y(s) y se aplica anti-transformada de Laplace. Pero existe una herramienta poderosa para observar el comportamiento de la salida en el dominio del tiempo. Veamos como funciona La Función de Transferencia de un sistema LTI.

A tabla siguiente ofrece un resumen del resto de las propiedades, junto con las ya mencionadas:

Referencias:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. Oppenheim – Señales y Sistemas
  3. Análisis de Sistemas Lineales Asistido con Scilab – Un Enfoque desde la Ingeniería Eléctrica.

SIGUIENTE: Ejemplo 1: Transformada de Laplace de una función exponencial – Matlab

Te puede interesar:

  1. Ejemplo 1 – Función Transferencia de Sistema masa-resorte-amortiguador
  2. Ejemplo 1 – Función de Transferencia de Sistema Electromecánico
  3. Ejemplo 1 – Función de transferencia de un sistema de nivel de líquidos

 

Atención: 

Si lo que Usted necesita es resolver con urgencia un problema: 

Atención:

Si lo que Usted necesita es determinar La Función de Transferencia de un Sistema..Le entregamos la respuesta en dos horas o menos, dependiendo de la complejidad. En digital. Póngase en contacto con nosotros, respuesta inmediata, resolvemos y entregamos la Función de Transferencia de sistemas masa-resorte-amortiguador, eléctricos, electromecánicos, electromotriz, nivel de líquido, térmico, híbridos, rotacional, no lineales, etc.. Opcional, Representación en Variables de Estado. Opcional, Entrevista por Skype para explicar la solución.

WhatsApp +593981478463, email: dademuchconnection@gmail.com.

Costo del servicio: 10 dólares por problema.

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593981478463 

email: dademuchconnection@gmail.

Matemática aplicada - Appd Math, Señales y Sistemas

Convolución de señales discretas – Sumatoria de convolución

Dadas dos señales de tiempo discreto x[n] y v[n], la convolución de ambas señales se define como: 

La expresión del lado derecho de la ecuación (1) se conoce como sumatoria de convolución. En el caso de que ambas señales x[n] y v[n] sean iguales a cero para n<0, entonces x[i]=0 para i<0, y v[n-i]=0 para n-i<0, entonces la ecuación (1) se puede escribir como:

Ejemplos
  1. Suponiendo que x[n]=anu[n], donde u[n] es la función escalón, y v[n]= bnu[n]. La convolución entre ambas señales es igual a:

Si a=b:Entonces:

Si ab:

Por tanto: 

2. La convolución de dos señales discretas puede representarse en Matlab mediante el siguiente código. Por ejemplo, la convolución de una señal p[n] consigo misma:

>> p=[0 ones(1,11) zeros(1,5)]%correspondiente a n=-1 a n=14

>>x=p

>> v=p

>> y=conv(x,v)

>> n=-2:25;

>> stem(n,y(1:length(n)),’filled’)

Convolución de una señal (p{n]=1 ) consigo misma.

 

3. Si aplicamos la convolución entre una entrada discreta x[n] a un sistema y la respuesta h[n] al impulso unitario discreto de dicho sistema, obtendremos la salida. Si h[n]=sen(0.5n) para n0, y la entrada x[n]=sen(0.2n) para n ≥0, podemos representar la salida mediante Matlab como sigue:

>> n=0:40;

>> x=sin(.2*n);

>> h=sin(.5*n);

>>y=conv(x,h);

>> stem(n,y(1:length(n)),’filled’) 

Salida y[n] para el sistema con entrada x[n]=sen(0.2n) y respuesta al impulso h[n]=sen(0.5n)

Fuente:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

ANTERIOR: Señales de tiempo discreto – muestreo en matlab

SIGUIENTE:

Escrito por: Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

email: dademuchconnection@gmail.com

Ingeniería Eléctrica, Señales y Sistemas

Señales de tiempo discreto – muestreo en matlab

Se denomina señal de tiempo discreto a aquella señal que es función de una variable de tiempo discreto t en n, donde n toma sólo valores enteros.


Variable de tiempo discreto

Se dice que la variable de tiempo t es una variable de tiempo discreto, si t toma los valores discretos:

para algún intervalo de valores enteros de n. Por ejemplo, t podría tomar los valores enteros t=0,1,2…; es decir,

Señal de tiempo discreto

Un señal de tiempo discreto una señal que es una función de la variable de tiempo discreto tn , donde n toma sólo valores enteros.

Una señal de tiempo discreto suele denotarse x[n]. En esta notación, la variable entera n corresponde a los instantes tn. La gráfica de una señal de tiempo discreto x[n] siempre estará en términos de los valores de x[n] contra los valores de la variable de tiempo discreto n.

Con frecuencia, los valores de x[n] se indican en la gráfica mediante círculos rellenos, con líneas verticales que conectan a dichos círculos con el eje del tiempo. Esto da como resultado una gráfica de tallo, la cual es una forma común de desplegar señales de tiempo discreto.

Como ejemplo, vamos a graficar en matlab la señal x[n] determinada por:

null

Introducimos en matlab el siguiente script en un archivo .m. He utilizado la plantilla para crear funciones:

n=-2:6;

x=[0 0 1 2 1 0 -1 0 0];

stem (n,x,’filled’);

xlabel (‘n’)

ylabel (‘x[n]’)

La gráfica de x[n] en matlab aparece a continuación:

Muestreo

La forma más común de generar una señal de tiempo discreto es muestreando una señal de tiempo continuo.

Supongamos que una señal continua x(t) se aplica a un interruptor electrónico que se cierra cada T segundos.

Si el lapso durante el cual el interruptor se cierra es mucho más pequeño que T, la salida del interruptor puede considerarse como una señal de tiempo discreto tn:

La señal de tiempo discreto resultante se conoce como versión muestreada de la señal original x(t), y a T se le conoce como período de muestreo. Debido a que la duración de T entre instantes adyacentes de muestreo tn y t(n+1) es igual a una constante, es decir:

El proceso de muestreo bajo estas condiciones se conoce como muestreo uniforme.

La Figura 1.10 muestra una señal x(t) de tiempo continuo:

La Figura 1.14 muestra una señal en tiempo discreto que surge de un proceso de muestreo uniforme de la señal de tiempo continuo mostrada en la Figura 1.10. En este caso, la variable entera n denota el instante nT. Primero incorporamos el código matlab para generar esta gráfica:

t=0:1:30;

x=exp(-.1*t).*sin(2/3*t);

y_out=stem(t,x,’filled’);

grid

xlabel(‘time[sec]’)

ylabel(‘x[n]’)

 

Por definición del proceso de muestreo, el valor de x[n] para cualquier valor entero, está dado por:

En el ejemplo anterior, la señal de tiempo continuo x(t) de la Figura 1.10, es muestreada con T=1, el resultado es la señal de tiempo discreto x[n] de la Figura 1.14.

Fuente:

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

ANTERIOR: Señales de tiempo continuo – Definición

SIGUIENTE: Convolución de señales discretas – Sumatoria de convolución

Escrito por: Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer 

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Circuit Analysis, Control System Analysis, Electrical Engineer, Matemática aplicada - Appd Math, Señales y Sistemas, Sistemas LDCID, Time Domain

UNDERDAMPED SECOND-ORDER SYSTEM

Fuentes:

Control Systems Engineering, Norman Nise

    1. Introduction Chapter 4 pp 162 (162)
    2. Poles and Zeros 4.1 pp 162 –
    3. First Order System 4.3 pp 165-168
    4. Second Order System 4.4 pp 168-177
    5. Underdamped Second-Order System 4.6 pp 177-186
  1. Modern_Control_Engineering__4t
    1. Introduction Chapter 5 pp 219 (232)
    2. First Order Systems 221 (234)-224
    3. Second Order System pp 224 (237)-234

Literature Review, Martes 14 noviembre 2017, 05:07 am – Caracas, Quito, Guayaquil.

Introduction

Now that we have become familiar with second-order systems and their responses, we generalize the discussion and establish quantitative specifications defined in such a way that the response of a second-order system can be described to a designer without the need for sketching the response. We define two physically meaningful specifications for second-order systems. These quantities can be used to describe the characteristics of the second-order transient response just as time constants describe the first-order system response.

Natural Frequency, Wn

The natural frequency of a second-order system is the frequency of oscillation of the system without damping. For example, the frequency of oscillation of a series RLC circuit with the resistance shorted would be the natural frequency.

Damping Ratio,

We have already seen that a second-order system’s underdamped step response is characterized by damped oscillations. Our definition is derived from the need to quantitatively describe this damped oscillations regardless of the time scale.Thus, a system whose transient response goes through three cycles in a millisecond before reaching the steady state would have the same measure as a system that went through three cycles in a millennium before reaching the steady state. For example, the underdamped curve in Figure 4.10 has an associated measure that defines its shape. This measure remains the same even if we change the time base from seconds to microseconds or to millennia.

 A viable definition for this quantity is one that compares the exponential decay frequency of the envelope to the natural frequency. This ratio is constant regardless of the time scale of the response. Also, the reciprocal, which is proportional to the ratio of the natural period to the exponential time constant, remains the same regardless of the time base.

We define the damping ratio, , to be:

Consider the general system:

Without damping, the poles would be on the jw-axis, and the response would be an undamped sinusoid. For the poles to be purely imaginary, a = 0. Hence:

Assuming an underdamped system, the complex poles have a real part, , equal to -a/2. The magnitude of this value is then the exponential decay frequency described in Section 4.4. Hence,

from which

Our general second-order transfer function finally looks like this:

Now that we have defined and Wn, let us relate these quantities to the pole location. Solving for the poles of the transfer function in Eq. (4.22) yields:

From Eq. (4.24) we see that the various cases of second-order response:

Underdamped Second-Order System

Now that we have generalized the second-order transfer function in terms of and Wn, let us analyze the step response of an underdamped second-order system.

Not only will this response be found in terms of and Wn, but more specifications
indigenous to the underdamped case will be defined. The underdamped second order system, a common model for physical problems, displays unique behavior that
must be itemized; a detailed description of the underdamped response is necessary
for both analysis and design. Our first objective is to define transient specifications
associated with underdamped responses. Next we relate these specifications to the
pole location, drawing an association between pole location and the form of the
underdamped second-order response. Finally, we tie the pole location to system
parameters, thus closing the loop: Desired response generates required system
components.

Let us begin by finding the step response for the general second-order system of Eq. (4.22). The transform of the response, C(s), is the transform of the input times the transfer function, or:

where it is assumed that < 1 (the underdamped case). Expanding by partial fractions, using the methods described, yields:

Taking the inverse Laplace transform, which is left as an exercise for the student, produces:

where:

A plot of this response appears in Figure 4.13 for various values of , plotted along a time axis normalized to the natural frequency.

We now see the relationship between the value of and the type of response obtained: The lower the value of , the more oscillatory the response.

The natural frequency is a time-axis scale factor and does not affect the nature of the response other than to scale it in time.

Other parameters associated with the underdamped response are rise time, peak time, percent overshoot, and settling time. These specifications are defined as follows (see also Figure 4.14):

  1. Rise time, Tr. The time required for the waveform to go from 0.1 of the final value to 0.9 of the final value.
  2. Peak time, TP. The time required to reach the first, or maximum, peak.
  3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-state, or final value at the peak time, expressed as a percentage of the steady-state value.
  4. Settling time, Ts. The time required for the transient’s damped oscillations to reach and stay within 2% of the steady-state value.

All definitions are also valid for systems of order higher than 2, although analytical expressions for these parameters cannot be found unless the response of the higher-order system can be approximated as a second-order system.

Rise time, peak time, and settling time yield information about the speed of the transient response. This information can help a designer determine if the speed and the nature of the response do or do not degrade the performance of the system.

For example, the speed of an entire computer system depends on the time it takes for a hard drive head to reach steady state and read data; passenger comfort depends in part on the suspension system of a car and the number of oscillations it goes through after hitting a bump.

Evaluation of Tp

Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing after t = 0.

Evaluation of %OS.

From Figure 4.14 the percent overshoot, %OS, is given by:

 Evaluation of Ts

In order to find the settling time, we must find the time for which c(t) in Eq. (4.28) reaches and stays within ₎±2% of the steady-state value, C final.

 Evaluation of Tr

A precise analytical relationship between rise time and damping ratio cannot be found. However, using a computer and Eq. (4.28), the rise time can be found. Let us look at an example.

We now have expressions that relate peak time, percent overshoot, and settling time to the natural frequency and the damping ratio. Now let us relate these quantities to the location of the poles that generate these characteristics. The pole plot for a general, underdamped second-order system is reproduced in Figure 4.17.

Now, comparing Eqs. (4.34) and (4.42) with the pole location, we evaluate peak time and settling time in terms of the pole location. Thus:

where is the imaginary part of the pole and is called the damped frequency of oscillation, and is the magnitude of the real part of the pole and is the exponential damping frequency part.

At this point, we can understand the significance of Figure 4.18 by examining the actual step response of comparative systems. Depicted in Figure 4.19(a) are the step responses as the poles are moved in a vertical direction, keeping the real part the same. As the poles move in a vertical direction, the frequency increases, but the envelope remains the same since the real part of the pole is not changing.

Let us move the poles to the right or left. Since the imaginary part is now constant, movement of the poles yields the responses of Figure 4.19(b). Here the frequency is constant over the range of variation of the real part. As the poles move to the left, the response damps out more rapidly.

Moving the poles along a constant radial line yields the responses shown in Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the responses look exactly alike, except for their speed. The farther the poles are from the origin, the more rapid the response.

Literature Review by: Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

 

Matemática aplicada - Appd Math, Señales y Sistemas

Sistemas lineales e invariantes en el tiempo.

Introducción

Un sistema lineal, en tiempo continuo o discreto, es aquel que posee la importante propiedad de la superposición: si una entrada consiste en la suma ponderada de varias señales, entonces la salida es simplemente la superposición (es decir, la suma ponderada) de las respuestas del sistema a cada una de estas señales.

Sea y1(t) la respuesta del sistema continuo a una entrada x1(t), y sea y2(t) la salida correspondiente a la entrada x2(t). Entonces, el sistema es lineal si:

  • La respuesta a x1(t) + x2(t) es y1(t) + y2(t)
  • La respuesta a k*x1(t) es k*y1(t), donde k es una constante compleja cualquiera.

La primera de estas dos propiedades se llama propiedad de aditividad, mientras que la segunda se conoce como la propiedad de escalamiento u homogeneidad.

Ejemplo

Consideremos un sistema S cuya entrada x(t) y salida y(t) están relacionadas mediante:

null

Ahora consideramos dos entradas arbitrarias x1(t) y x2(t). Ellas generan las siguientes respuestas:

null

Consideremos una tercera entrada x3(t)=a*x1(t)+b*x2(t), la cual genera una salida y3(t) igual a:

null

Concluimos entonces que el sistema es lineal.

El modelo matemático y sus términos

Los sistemas lineales, dinámicos, causales, invariantes en el dominio y deterministas (LDCID) definidos en el dominio del tiempo continuo constituyen parte importante en el estudio de los sistemas eléctricos, debido al hecho de sus innumerables aplicaciones dentro de la ingeniería eléctrica.

En general podría decirse que los sistemas lineales son el resultado de aproximaciones en el modelaje de sistemas. No obstante, aun cuando los sistemas eléctricos forman parte de los llamados sistemas no lineales, su tratamiento como sistemas lineales permiten dar respuestas acertadas a las preguntas que pudiera requerir los profesionales del área.

Los modelos matemáticos de sistemas dinámicos definidos en el dominio continuo presentan términos asociados a operaciones de derivadas de las cantidades externas con respecto a la variable independiente, que por lo general será el tiempo. Estos modelos matemáticos se denominan ecuaciones diferenciales, y sus respectivas respuestas son totalmente definidas por las condiciones de cada sistema representado por el modelo matemático.

Un aspecto importante a estudiar la representación de un sistema a través de su modelo matemático es la identificación de los términos que son expresados en el modelo matemático de un sistema LDCID, el cual es representado por una ecuación diferencial ordinaria ( (ODE) involves derivatives of a function of only one variable) de orden m-ésimo en relación a la señal de excitación x(t), y de orden n-ésimo con respecto a su señal de respuesta y(t), es decir, en general un modelo matemático asociado a un sistema LDCID viene dado por:

donde y(t) representa la señal de respuesta también denominada señal de salida, x(t) representa la señal de excitación o de entrada, y los coeficientes an;a1; …;a0 y bm;b1; … ;b0 representan los parámetros del sistema, que alteran respectivamente la señal de excitación y la señal de respuesta, así como sus derivadas ordinarias, y la variable independiente t, en este caso puede significar el tiempo, con el propósito de contextualizar el dominio en el cual está definido el modelo matemático.

Modelo matemático de primer orden

Un sistema LDCID en el dominio continuo de primer orden es representado mediante una ecuación diferencial dada por:

Note que el modelo debe ser de primer orden en lo que respecta a los operadores ,

es decir, en mayor orden de derivadas de la señal de respuesta y(t) debe ser n = 1.

Sin embargo, podría ser de cualquier orden con relación a los operadores de la excitación para , debido al hecho de que las operaciones de derivadas sobre la señal de excitación no son consideradas parte del sistema.

Note que las operaciones definidas sobre la señal de excitación no forman parte del sistema, por cuanto las operaciones matemáticas definidas sobre la excitación constituyen el modelo matemático de la señal de excitación.

Por razones de simplificación en la nomenclatura y mediante la propiedad de superposición, se estudiará la solución de la ecuación diferencial:

Note que para obtener la solución del sistema debe conocerse al menos una condición de la respuesta del sistema, la cual usualmente es especificada a través de su condición inicial, y(0).

Luego de manipulaciones algebraicas convenientes (demostración en Fuente 1), se concluye que la solución a la ecuación diferencial representada por la Ecuación (2.12) viene dada por:

donde:

  1. Respuesta transitoria:

  1. Respuesta permanente

Ejemplo 

La Figura 2.3 muestra un sistema compuesto por una resistencia y un capacitor, y cuyos valores son representados respectivamente por R y C. Además, la figura muestra que el sistema eléctrico es excitado por una señal x(t) = u(t) y su respuesta es medida a través de la tensión sobre el capacitor, donde u(t) representa la función escalón unitario:

El modelo matemático asociado al sistema representado por la Figura 2.3 puede obtenerse empleando elementales ecuación de redes eléctricas:

Entonces, al comparar el modelo matemático definido por la Ecuación (2.12) con el modelo obtenido, se tiene que el coeficiente a0 y la señal de excitación son:

,

Al aplicar la solución expresada por medio de la Ecuación (2.21), se puede afirmar que:

Al operar la Ecuación (2.26) se tiene que la respuesta del sistema es dada por:

Note que:

por cuanto el elemento de memoria representado por el capacitor no permite cambios bruscos y por tal motivo y(0-) = y(0) = y(0+). Además, para buscar una respuesta a la pregunta debe tomarse en cuenta que la excitación tiene un valor de cero y ella ha permanecido en cero desde mucho tiempo atrás, es decir, desde menos infinito, obviamente y(0) = 0.

Modelo matemático de orden superior.

En este apartado se introducirá el operador p, el cual será empleado para representar el orden de la derivada que está operando en cada término de la ecuación diferencial ordinaria bajo estudio.

Definición 2.1 (Operador p) Se define el operador pn al operador diferencial que representa

la derivada n-ésima con respecto a la variable del dominio continuo. Es decir,

Por otra parte, se debe introducir dos definiciones que conforman la solución completa de una ecuación diferencial ordinaria.

Definición 2.2 (Respuesta transitoria) La respuesta transitoria o, también denominada natural o solución homogénea, es la solución de toda ecuación diferencial ordinaria cuando su señal de excitación viene definida por la función nula.

Definición 2.3 (Respuesta permanente) La respuesta permanente o, también denominada forzada o solución particular, es la solución de la ecuación diferencial ordinaria ante una señal de excitación que actúa sobre el sistema.

Observación 2.1 La respuesta transitoria, natural u homogénea es intrínseca del sistema y no de la excitación, a diferencia de que la respuesta permanente, forzada o particular, que además de depender del sistema, depende de la excitación.

Se conocen condiciones del sistema, bien sean condiciones iniciales a través del valor de la respuesta y(t) para t = 0 y sus primeras n-1 derivadas para t = 0, ó n valores conocidos de la respuesta completa y(t) en n distintos instantes de t, o combinación de lo anterior.

Se tiene que:

donde el coeficiente o también denominado parámetro an = 1 (ODE with leading coefficient equal to 1 is called standard ODE form)

Aplicando las Ecuaciones (2.46), se puede escribir el modelo matemático definido por la Ecuación (2.45) como:

donde D(p) es el ampliamente conocido polinomio característico del sistema.

Respuesta Transitoria

Existen diversos métodos para determinar la respuesta transitoria de un modelo matemático asociado a un sistema LDCID en el dominio continuo, el cual es representado por una ecuación diferencial ordinaria.

Método 2.1 (Determinación de la Respuesta Transitoria) Dada la ecuación diferencial ordinaria definida por la Ecuación (2.44),

Ejecute:

Paso 1. Asegúrese de que el término an de la ecuación diferencial sea igual a uno. Si no es así, divida toda la ecuación diferencial entre an.

Paso 2. Aplique el operador “p” a la ecuación diferencial.

Paso 3. Determine las n raíces que anulen el polinomio D(p) y denote las raíces reales como ri para cada i = 1; … ;nr, y las raíces complejas conjugadas como

para cada i = nr +1; ..;n, donde

tomando en cuenta la multiplicidad de cada una de las raíces denotada como mi.

EJEMPLO Respuesta transitoria de un sistema de quinto orden

Suponga el modelo matemático de un sistema LDCID en tiempo continuo definido

por:

donde y(t) es la señal de respuesta del sistema, y x(t) representa la señal de excitación. Para el modelo matemático definido mediante la Ecuación (2.48), determine la solución homogénea del sistema aplicando el Método 2.1.

Solución. Debido a que el término a5 no es igual a 1, se debe dividir toda la ecuación diferencial entre a5, para luego aplicar el operador p, obteniéndose:

Al calcular las cinco raíces que anulan D(p), se tiene que sus raíces son: r1 = -2, r22= -3 y

z3 = -1 +- j. Entonces, se puede afirmar que las soluciones asociadas a cada raíz viene dada por:

Respuesta Permanente

Al despejar y(t) de la Ecuación (2.47):

se tiene que

donde la fracción N(p)/D(p) representa el operador del sistema L(p).

A fin de estudiar el caso más general de las señales de excitaciones más comúnmente presentes en los sistemas eléctricos, se analizará cuando la señal de excitación es considerada una exponencial definida por:

donde en general s es un parámetro o coeficiente complejo, y cuyo valor es

y B es un parámetro constante de la señal de excitación, que pertenece al conjunto de los números reales

Por otra parte, los casos en los cuales pueden ser aplicado el método que será descrito en este punto, corresponden a aquellos en donde D(s) no es igual a 0.

La Ecuación (2.50) permite representar diversas situaciones para la señal de excitación x(t), y cuyos casos son mostrados a continuación mediante la Tabla 2.1

Es importante hacer notar que la operación

ejecuta mediante la operación límite, es decir,

EJEMPLO 2.6 Considere un sistema LDCID con modelo matemático definido por:

Para el sistema representado por la Ecuación (2.52), determine la respuesta permanente del sistema si la señal de excitación es:

Solución. Dado que el coeficiente a3 es igual a uno, se puede aplicar el operador p a la Ecuación (2.52) obteniéndose:

Respuesta Completa

La respuesta completa del sistema se consigue sumando la respuesta transitoria u homogénea con la respuesta permanente o solución particular, es decir:

donde los coeficientes ci para todo i = 1; …. ;n se obtiene de n condiciones conocidas, en concordancia con el grado de la ecuación característica N(p), es decir, los coeficientes ci para todo i = 1; …. ;n son determinados por el conocimiento de:

Por ejemplo, el problema ahora es hallar la respuesta completa del sistema, bajo las condiciones:

Solución. Claramente se tiene que el término a3 = 1, hecho que permite aplicar el operador p directamente a la Ecuación (2.52), arrojando el polinomio característico

D(p) = p3 +8p2 +19p+12, y cuyas raíces que lo anulan son r1 = -1, r2 = -3 y r3 = -4.

Como consecuencia del análisis hecho, se tiene que la solución homogénea está dada por:

De las Ecuaciones (2.53) y (2.57) se puede afirmar que la solución completa es:

Al resolver el sistema de ecuaciones lineales definido por la Ecuación (2.60)

se obtiene que c1 = 1/3, c2 = -3/2 y c3 = 5/3, los cuales al ser sustituido en la Ecuación (2.58) se llega a:

Fuentes:

  1. Análisis de Sistemas Lineales – Prof. Ebert Brea
    1. Análisis de Sistemas en el Dominio Continuo p 29
  2. Control Systems Engineering, Norman Nise
    1. First Order System 4.3 p 165-168
  3. Oppenheim – Señales y Sistemas
    1. 1.6.6 Linealidad p 53

Literature Review by: Larry Francis Obando – Technical Specialist, Education Content Writer

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

00593998524011

email: dademuchconnection@gmail.com

Análisis de sistemas de control, Control System Analysis, Electrical Engineer, Electronic Engineer, Señales y Sistemas, Time Domain

FIRST and SECOND ORDER SYSTEMS

FIRST and SECOND ORDER SYSTEMS

 

Fuentes:

  1. Control Systems Engineering, Norman Nise
    1. Introduction Chapter 4 pp 162 (162)
    2. Poles and Zeros 4.1 pp 162 –
    3. First Order System 4.3 pp 165-168
    4. Second Order System 4.4 pp 168-177
  2. Modern_Control_Engineering__4t
    1. Introduction Chapter 5 pp 219 (232)
    2. First Order Systems 221 (234)-224
    3. Second Order System pp 225(238)-229

 

 

TIME DOMAIN CONTROL SYSTEMS ANALYSIS

Analisis de sistemas de control en el dominio del tiempo

FIRST ORDER SYSTEMS

We now discuss first-order systems without zeros to define a performance specification for such a system…

We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance specifications:

 

  • Time Constant: We call 1/a the time constant of the response. From Eq. (4.7), the time constant can be described as the time for to decay to 37% of its initial value. Alternately, from Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of its final value.

The reciprocal of the time constant has the units (1/seconds), or frequency. Thus, we can call the parameter a the exponential frequency. Thus, the time constant can be considered a transient response specification for a first order system, since it is related to the speed at which the system responds to a step input.Since the pole of the transfer function is at a, we can say the pole is located at the reciprocal of the time constant, and the farther the pole from the imaginary axis, the faster the transient response.

 

  • Rise Time (Tr): Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final value.

 

  • Settling Time (Ts): Settling time is defined as the time for the response to reach, and stay within, 2% of its final value.2

Fuente [1]

Fuente [3]

Fuente [3]

SECOND-ORDER SYSTEMS

Literature Review by: Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

PAGE_BREAK: PageBreak

Circuit Analysis, Ecuaciones Diferenciales, Electrical Engineer, Elementos Básicos, Literature Review, Señales y Sistemas, Sin categoría

EL CAPACITOR

EL CAPACITOR

Actividad – Literature Review
Martes 03 octubre, 11:05 am

Fuentes:

  1. Introduccion-al-analisis-de-circuitos-robert-l-boylestad
    1. Capacitores 375 (387)
  2. Análisis de Redes – Van Valkenburg, 1999 – Network Analysis – Universidad de Illinois.
    1. El Parámetro Capacitancia p 20 (23)
  3. Análisis de Sistemas Lineales – Prof. Ebert Brea
    1. Análisis de Sistemas en el Dominio Continuo pp 29 – (58)

 

Preliminares

Por tanto se concluye que la intensidad del campo eléctrico en cualquier punto a una distancia r de una carga puntual de Q coulombs, será directamente proporcional a la magnitud de la carga e inversamente proporcional al cuadrado de la distancia a la carga.

Capacitancia

Al instante en que el interruptor se cierra, se extraen los electrones de la placa superior y se depositan sobre la placa inferior debido a la batería, dando por resultado una carga neta positiva sobre la placa superior del capacitor y una carga negativa sobre la placa inferior…Cuando el voltaje en el capacitor es igual al de la batería, cesa la transferencia de electrones y la placa tendrá una carga neta Q=CV=CE

En este punto el capacitor asumirá las características de un circuito abierto: una caída de voltaje en las placas sin flujo de carga entre las placas.

El voltaje en un capacitor no puede cambiar de forma instantánea.

De hecho, la capacitancia en una red es también una medida de cuanto se opondrá ésta a un cambio en el voltaje de la red. Mientras mayor sea la capacitancia, mayor será la constante de tiempo y mayor el tiempo que le tomará cargar hasta su valor final

Ejemplo 2.2 (Fuente:3) La Figura 2.3 muestra un sistema compuesto por una resistencia y un capacitor, y cuyos valores son representados respectivamente por R y C. Además, la figura muestra que el sistema eléctrico es excitado por una señal x(t) = u(t) y su respuesta es medida a través de la tensión sobre el capacitor, donde u(t) representa la función escalón unitario:

El modelo matemático asociado al sistema representado por la Figura 2.3 puede obtenerse empleando elementales ecuación de redes eléctricas:

Entonces, al comparar el modelo matemático definido por la Ecuación (2.12) con el modelo obtenido, se tiene que el coeficiente a0 y la señal de excitación son:

,

Al aplicar la solución expresada por medio de la Ecuación (2.21), se puede afirmar que:

Al operar la Ecuación (2.26) se tiene que la respuesta del sistema es dada por:

Note que:

por cuanto el elemento de memoria representado por el capacitor no permite cambios bruscos y por tal motivo y(0-) = y(0) = y(0+). Además, para buscar una respuesta a la pregunta debe tomarse en cuenta que la excitación tiene un valor de cero y ella ha permanecido en cero desde mucho tiempo atrás, es decir, desde menos infinito, obviamente y(0) = 0.

Literature Review by: Larry Francis Obando – Technical Specialist

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca)

WhatsApp: 00593984950376

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Matemática aplicada - Appd Math, Señales y Sistemas

Señales de tiempo continuo – Definición

Primero que nada el analista de sistemas debe conocer cómo modelar señales en el dominio del tiempo continuo – LFO (04-09-2017)

Fuentes (Copia Textual – Literature Review).

  1. Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab
  2. LibroASL_Edicion_2015
  3. Analisis_de_Sistemas_Lineales
  4. Oppenheim – Señales y Sistemas
  5. Nota1Señales
  6. Contenido:
  1. Introducción
  2. Función Escalón
  3. Función Rampa
  4. Función Impulso
  5. Función Pulso Rectangular
  6. Función Pulso Triangular
  7. Función Periódica
  8. Función Exponencial

Fuente: [1]

Fuente: [1]

 

PAGE_BREAK: PageBreak

Función Escalón

Fuente: [3]

Fuente: [5]

Función Rampa

Fuente: [1]

Fuente: [1]

 

PAGE_BREAK: PageBreak

Función Impulso

Fuente: [5]

Fuente: [5]

Fuente: [2]

Fuente: [5]

Fuente: [1]

Fuente: [5]

 

PAGE_BREAK: PageBreak

Función Pulso Rectangular

Fuente: [2]

 

 

 

 

PAGE_BREAK: PageBreak

Función Pulso triangular

Fuente: [2]

Fuente: [2]

 

PAGE_BREAK: PageBreak

Función Periódica

Fuente: [1]

Fuente: [3]

Fuente: [1]

Fuente: [1]

Fuente: [4]

 

PAGE_BREAK: PageBreak

Función Exponencial

Fuente: [5]

Fuente: [3]

Fuente: [3]

Fuente: [4]

Fuente: [5]

Fuente: [4]

Fuente: [3]

Fuente: [5]

Fuente:

Fundamentos_de_Señales_y_Sistemas_usando la Web y Matlab

>1.1 Señales en tiempo continuo

SIGUIENTE: Señales de tiempo discreto – Muestreo en matlab.

Written by: Larry Francis Obando – Technical Specialist – Educational Content Creation – Mentoring (Tutoría para estudiantes universitarios)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Ecuador (Quito, Guayaquil, Cuenca) – 0998524011

WhatsApp: +593998524011

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)