Inteligencia Artificial, Machine Learning

La idea detrás del Machine Learning

La idea detrás del Machine Learning (aprendizaje automático) es que las percepciones que recibe un Agente (máquina) deberían usarse no solo para actuar, sino también para mejorar la habilidad del agente para actuar en el futuro. El aprendizaje tiene lugar como resultado de la interacción entre el Agente y el mundo, y de la observación por el Agente de sus propios procesos de toma de decisiones.

El aprendizaje puede consistir en la memorización trivial de la experiencia hasta manifestarse en la creación de teorías científicas complejas, tal como las exhibió Albert Einstein. Una máquina que aprende de su propia experiencia al interactuar con el medio que le rodea, implementa su proceso de aprendizaje a través de “agentes generales de aprendizaje”. El aprendizaje inductivo es uno de estos agentes  y su principal misión es construir una función a partir de un conjunto de ejemplos de entrada / salida,  que ayude al Agente a predecir la salida para entradas futuras y de esta manera tomar decisiones que optimicen su desempeño.

Es decir, contamos con la historia de un sistema, contada en forma de datos. El sistema podría ser un sistema de control de velocidad de auto autónomo. La entrada podría ser, por ejemplo, la distancia entre el auto autónomo y otros autos (obstáculos) frente a él. La salida, la reducción de velocidad óptima para evitar el choque. Es una forma muy rudimentaria de contar la historia, evidentemente faltan muchos detalles, pero con esto esperamos tener una idea simple.

Cada uno de esos datos es un par entrada/salida del sistema, lo que le permite al Agente diseñar una función que le permita elaborar un mapa entre la entrada y la salida con la intención de predecir cuál será la futura salida para una futura entrada. Mientras más datos de buena calidad se tengan, mejor entrenado estará el agente (más certera será la función). Además, el agente podrá actualizar automáticamente los parámetros de la función con su propia experiencia ensayo-error.

Es lo que se conoce como “Aprendizaje Supervisado”, el Agente recibe de la función diseñada (hipótesis) el valor correcto (o aproximadamente correcto) para entradas particulares, y luego cambia o mejora la representación de la función para intentar hacer coincidir la información que la función le da con aquella provista por la retroalimentación (feedback).

Mientras que en el Aprendizaje Supervisado, el objetivo es predecir el valor de una  variable de salida basados en una cantidad de medidas de la variable de entrada, en el “Aprendizaje no Supervisado” no hay variable de salida y el objetivo es describir las asociaciones y patrones entre un conjunto de medidas de la variable de entrada.

Existen diferentes algoritmos para el aprendizaje inductivo.  Algoritmos  que luego se transforman en programas de computación. La preocupación principal de Machine Learning es construir programas computarizados que “mejoren automáticamente” con la experiencia.

¿Podemos imaginar el gigantesco potencial de aplicación de esta tecnología? Hay que poner la lupa en aquellas tareas urgentes pero casi imposibles de realizar de manera manual. Las computadoras podrían aprender de millones de registros médicos cuáles tratamientos son más efectivos para atender enfermedades complejas como el cáncer; en un planeta que exige cada día más potencia eléctrica, podrían aprender de la experiencia a optimizar los costos de energía basados en patrones de uso particular de los ocupantes residenciales.

En el campo conocido como minería de datos (data mining), algoritmos de aprendizaje automático se utilizan de forma rutinaria para descubrir valiosos conocimientos de grandes bases de datos comerciales que contienen registros de mantenimiento de equipos, solicitudes de préstamos, transacciones financieras, registros médicos y similares. En años recientes se han desarrollado programas de extracción de datos que aprenden a detectar transacciones fraudulentas con tarjetas de crédito. Para problemas tales como el reconocimiento de voz (speech recognition), loes algoritmos basados en Machine Learning superan a todos los demás enfoques que se han intentado hasta la fecha.

Para quienes nos iniciamos en la materia, podemos proponer un enfoque práctico. Empezar por definir con precisión una clase de problemas de nuestro interés particular que requieran  aprendizaje automático, para luego explorar algoritmos que resuelven tales problemas, y comprender de esta manera la estructura fundamental de los procesos de aprendizaje. Nuestro objetivo final es ser capaces de diseñar sistemas de aprendizaje automático (Machine Learning Systems).

Escrito por:  Larry Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Empresarial / Emprendedores

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593981478463

Anuncios