Ecuaciones Diferenciales, Matemática aplicada - Appd Math

Solución Total de una Ecuación Diferencial con condiciones iniciales

Para hallar la solución total de una Ecuación Diferencial Ordinaria (EDO) debemos realizar los siguientes pasos:

  1. Determinar la solución homogénea Yh(t) ;
  2. Evaluar la solución particular Yp(t) para la señal de entrada dada
  3. Hallar la solución total mediante la suma Yh(t) + Yp(t) ;
  4. Solucionar el sistema de ecuaciones lineales obtenido a fin de satisfacer las condiciones iniciales dadas (Solución única).

Nota: Si tenemos una Ecuación Diferencial de orden n, necesitaremos n condiciones iniciales para determinar la solución única.

Ecuación Diferencial de orden superior.
  1. Determinar la solución completa de la siguiente EDO:

null

Dónde:

null

RESPUESTA EJERCICIO 1.

La solución completa o total y(t) para una EDO viene dada por:

nullSolución homogénea

Para hallar la solución homogénea Yh(t)  suponemos F(t)=0. Es decir:

null

Con los coeficientes de la ecuación anterior formamos el polinomio D(p). Al igualar D(p)=0, formamos una ecuación denominada ecuación característica:

null

Debemos hallar ahora las raíces de la ecuación característica, las cuáles son:

null

Aplicando las reglas para hallar la solución homogénea Yh(t) (ver Anexos), podemos determinar que:

null

Solución particular

Utilizando el polinomio D(p) formamos la siguiente ecuación:

null

Es decir:

null

Aplicando las reglas para hallar la solución particular (ver anexo), podemos determinar Yp(t)  como:

null

Solución Total

Como se señaló anteriormente, la solución completa o total Y(t)  viene dada por:

null

Es decir:

null

Solución Única

Para hallar la solución única debemos determinar el valor de las constantes C1 , C2 y C3 utilizando las condiciones iniciales para crear y resolver un sistema de ecuaciones típico:

null

Resolviendo el sistema anterior obtenemos que:

null

Por tanto, la solución única es:

null

ANEXOS

null

null

null

null

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – WhatsApp: +34 633129287 – Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España +34 633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

Anuncios
Ecuaciones Diferenciales, Física Aplicada, Matemática aplicada - Appd Math, Sistemas Mecánicos

Problema de ecuaciones diferenciales con condiciones iniciales – Sistema masa, resorte, amortiguador.

La respuesta completa o solución completa de una ecuación diferencial ordinaria (EDO – que involucra derivadas de una función de una sola variable) está conformada por la suma de la respuesta transitoria y la respuesta permanente. La respuesta permanente es la solución asociada a una excitación F(t) del sistema. Es por ello que también se le conoce como respuesta forzada o solución particular. Cuando la excitación del sistema es nula, es decir F(t)=0, la respuesta del sistema se conoce como respuesta natural, transitoria, o solución homogénea.

Para hallar la solución total de una EDO debemos realizar los siguientes pasos:

  1. Determinar la solución homogénea Yh(t) ;
  2. Evaluar la solución particular Yp(t) para la señal de entrada dada
  3. Hallar la solución total mediante la suma Yh(t) + Yp(t) ;
  4. Solucionar el sistema de ecuaciones lineales obtenido a fin de satisfacer las condiciones iniciales dadas (Solución única).

Nota: Si tenemos una Ecuación Diferencial de orden n, necesitaremos n condiciones iniciales para determinar la solución única.

Presentamos a continuación tres ejemplos. El primero es un ejemplo para visualizar el método general de resolver ecuaciones diferenciales. Mientras, el segundo y el tercero están referidos al sistema masa-resorte-amortiguador en dos sistemas: MKS y sistema inglés. Las reglas utilizadas para resolver estas ecuaciones aparecen al final del artículo (Anexos).

Ecuación Diferencial de orden superior.
  1. Determinar la solución completa de la siguiente EDO:

nullDónde:

null

RESPUESTA EJERCICIO 1.

La solución completa o total y(t) para una EDO viene dada por:

nullSolución homogénea

Para hallar la solución homogénea Yh(t)  suponemos F(t)=0. Es decir:

null

Con los coeficientes de la ecuación anterior formamos el polinomio D(p). Al igualar D(p)=0, formamos una ecuación denominada ecuación característica:

null

Debemos hallar ahora las raíces de la ecuación característica, las cuáles son:

null

Aplicando las reglas para hallar la solución homogénea Yh(t) (ver Anexos), podemos determinar que:

null

Solución particular

Utilizando el polinomio D(p) formamos la siguiente ecuación:

null

Es decir:

null

Aplicando las reglas para hallar la solución particular (ver Anexos), podemos determinar Yp(t)  como:

nullSolución Total

Como se señaló anteriormente, la solución completa o total Y(t)  viene dada por:

nullEs decir:null

Solución Única

Para hallar la solución única debemos determinar el valor de las constantes C1 , C2 y C3 utilizando las condiciones iniciales para crear y resolver un sistema de ecuaciones típico:

null

Resolviendo el sistema anterior obtenemos que:

null

Por tanto, la solución única es:

null

Ejemplos - Sistema masa, resorte, amortiguador.

La ecuación diferencial de segundo orden que representa el concepto de vibración mecánica de un sistema masa-resorte-amortiguador en particular, es la siguiente:

nullDonde:null

2. Sistema MKS: Resolver el problema de ecuaciones diferenciales con condiciones iniciales para el siguiente sistema de resorte-masa-amortiguador. Se sabe que un peso de 10 N alarga un resorte 2 metros. El mecanismo amortiguador ejerce una fuerza de 6 N para una velocidad de 2 m/seg. Se fija el resorte un peso de 10 N y se suelta el resorte desde una posición de 2 m debajo de la posición de equilibrio. En el momento en que se suelta, el sistema tiene una velocidad de 1 m/seg.

3. Sistema Inglés: Se sabe que un peso de 5 libras alarga un resorte 1 pulgada. El mecanismo amortiguador ejerce una fuerza de 0.02 libras para una velocidad de 2 pulg/seg. Se fija al resorte un peso de 2 libras y se suelta el resorte desde una posición de 2 pulgadas debajo de la posición de equilibrio. En el momento en que se suelta, el sistema tiene una velocidad de 1 pulg/seg.

Suponemos que en el tiempo t=0 la masa es jalada hacia abajo (sentido positivo). Luego, cada parte del enunciado del problema representa cada una de las fuerzas que intervienen en la ecuación (1). Aplicamos superposición una vez más y evaluamos cada fuerza por separado. Sustituimos los valores dados en el enunciado para hallar el valor de las constantes KaKr y m.

RESPUESTA EJERCICIO 2.

  1. Sistema MKS:

Se sabe que un peso de 10 N (Fr) alarga el resorte 2 metros (y):

nullDónde:nullPor tanto:null

El mecanismo amortiguador ejerce una fuerza de 6 N (Fa) para una velocidad de 2 m/seg (va).  Es decir:nullDónde:nullPor tanto:null

Se fija el resorte un peso de 10 N (w) y se suelta el resorte desde una posición de 2 m (y0) debajo de la posición de equilibrio. Es decir:

null

La ecuación diferencial de segundo orden que representa el concepto de vibración mecánica es la siguiente:

null

Solución homogénea

Para hallar la respuesta natural, suponemos F(t)=0, es decir:

null

La manera más práctica de resolver esta ecuación es reordenarla y expresarla en su forma estándar, es decir, como un polinomio en el cual el coeficiente de grado más alto (el que acompaña a la derivada más alta) es igual a uno.

Dividimos cada término del polinomio entre m, haciendo el primer coeficiente de la ecuación igual a 1:nullSustituyendo los valores del problema 2 en la anterior ecuación, obtenemos:

nullAplicamos el operador P=dy/dt:

null

Debemos hallar ahora las raíces de la ecuación característica, las cuáles son:

null

Se puede afirmar que las soluciones asociadas a cada raíz vienen dadas por:

null

Solución particular

Utilizando el polinomio D(p) formamos la siguiente ecuación:

null

Es decir:

null

Aplicando las reglas para hallar la solución particular (ver Anexos), podemos determinar Yp(t)  como:

null

Solución Total

Como se señaló anteriormente, la solución completa o total Y(t)  viene dada por:

nullEs decir:null

Solución Única

Para hallar la solución única debemos determinar el valor de las constantes C1 y C2 utilizando las condiciones iniciales para crear y resolver un sistema de ecuaciones típico.

Se suelta el resorte desde una posición de 2 m debajo de la posición de equilibrio. En el momento en que se suelta, el sistema tiene una velocidad de 1 m/seg. Es decir:

null

Utilizando la ecuación para la solución total y(t), obtenemos las siguientes ecuaciones del sistema para t=0:

null

De donde obtenemos que:

null

Por tanto la solución única según las condiciones iniciales, es:

null

RESPUESTA EJERCICIO 3

2. Sistema Inglés:

Se sabe que un peso de 5 libras (Fr) alarga el resorte 1 pulgada (y). Es decir:

nullDe dónde:nullPor tanto:

null

El mecanismo amortiguador ejerce una fuerza de 0.02 libras (Fa) para una velocidad de 2 pulg/seg (va).  Es decir:

nullDónde:null

Por tanto:

null

Se fija el resorte un peso de 2 libras (w) y se suelta el resorte desde una posición de 2 pulgadas (y0) debajo de la posición de equilibrio. Es decir:

null

La ecuación diferencial de segundo orden que representa el concepto de vibración mecánica es la siguiente:

null

Para hallar la respuesta natural, suponemos F(t)=0, es decir:

null

La manera más práctica de resolver esta ecuación es reordenarla y expresarla en su forma estándar, es decir, como un polinomio en el cual el coeficiente de grado más alto (el que acompaña a la derivada más alta) es igual a uno.

Dividimos cada término del polinomio entre m, haciendo el primer coeficiente de la ecuación igual a 1:

nullSustituyendo valores:

null

Es decir:

null

Aplicamos el operador p=dy/dt:

null

Calculamos las raíces que anulan el polinomio anterior (matlab):

null

Se puede afirmar que las soluciones asociadas a cada raíz (respuesta natural) vienen dadas por:

null

…En construcción…

ANEXOS

null

null

null

null

Escrito por Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer – WhatsApp: +34 633129287 – Atención Inmediata!!

Twitter: @dademuch

Mentoring Académico / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: España +34 633129287

Caracas, Quito, Guayaquil, Cuenca. 

WhatsApp: +34 633129287

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

 

 

Travel Writing

La amabilidad en Jaén capital.

Llegamos a Jaén a las 7:30 pm aproximadamente el día jueves 15 de agosto del año 2019. El autobús, proveniente de Madrid, atravesó numerosos pueblos de la provincia andaluz, antes de entrar a las calles de la pequeña ciudad capital. Las calles estaban vacías y los negocios cerrados. Las chicas fueron a buscar un hostal mientras yo me quedé con las maletas en el terminal terrestre. No teníamos idea de dónde alojarnos. La improvisación nos salió cara porque elegimos un mal lugar a un precio injustificable: 65 euros.

Afortunadamente, al día siguiente pudimos buscar un mejor hostal: La Estación. A partir de allí, las cosas mejoraron.  La amabilidad de los ciudadanos de Jaén nos tiene conmovidos. Sin temor a exagerar, pocas veces nos hemos topado con gente más dispuesta al servicio.

Alberto, el recepcionista del Hostal La Estación, un chico de unos 22 años, no escatimó esfuerzos para hacer de nuestra estancia una experiencia agradable. Fue cortés y atento, pero con mucha alegría. Me dio información detallada de las rutas y costos del transporte en tren hasta Madrid o Cádiz. Me explicó los pro y los contra de alquilar un piso. Durante el Check-out, se ofreció a buscarnos un taxi. Dejó por un momento su escritorio y fue a conversar con los taxistas. Al ver que no contaban con la unidad apropiada por el número de maletas que llevábamos, llamó por teléfono. Luego, nos ayudó con el traslado de las maletas no dejó de encargarse y asegurarse de nuestra comodidad hasta que por fin llegó un auto con mayor capacidad. Espléndido.

null

nulldormitorio

Las habitaciones del Hostal La Estación, si bien no son de lujo, ofrecen una excelente relación calidad-precio, si lo comparamos con el hostal de la primera noche, cuyas condiciones eran lamentables: habitación demasiado pequeña para tres personas, con un baño compartido alejado del cuarto por un pasillo de unos 30 metros. El dueño de aquel fiasco nos exigió absoluto silencio (el niño que nos acompañaba no podía ser niño, tenía que estar sedado según él). No hubo jabón ni shampoo. Nada de vasos limpios ni agua potable. No había TV por suscripción ni guardarropa. Y la instalación eléctrica fallaba, al mover algún cable se apagaban los faros. Era preferible dormir en el piso que en aquellos colchones vencidos. En pocas palabras, violación de normas estándar, una estafa, por 65 euros. Al día siguiente tuvimos la fortuna de cambiarnos al Hostal La Estación por 67 euros. En su caso, La Estación nos ofreció una habitación triple amplia, con un soporte físico impecablemente mantenido, con amplio baño privado, agua potable, vasos limpios, jabón y shampoo.  Privacidad para hablar alto o algarabías infantiles, y un personal de contacto afable y dedicado al servicio, no al negocio.

Hablando de nuevo sobre Alberto, su caso no es aislado. Nos ha colmado a todos el constatar que es un comportamiento general. El Sr. Enrique, director de extranjería de la central de policías; Lydia, la promotora de telefonía móvil Vodafone; Morelia, la funcionaria de Bankia donde abrí mi cuenta; el Sr. Ambrosio de la Escuela Antonio Prieto; los vecinos del piso de arriba en el bloque donde logramos encontrar una residencia alquilada, al lado de La Plaza La Igualdad. Las personas a las que pedimos información en la calle. Todos desbordan en excelente aptitud al servicio, con una amabilidad desbordante que te hace sentir bienvenido, y una sonrisa genuina.

¿Cuándo salimos a hacer diligencias?, pregunta Alejandro, mi hijo de cinco años, con quien salgo a las calles de Jaén a realizar tareas y procedimientos para establecernos en esta tranquila y encantadora ciudad. Ale le cae bien a todos. Es un chico muy inquieto, pero tierno como cachorro. Y en todos deja una huella. Al regresar a la policía por un certificado, el Sr. Enrique n se acordaba de mí, pero sí de Ale y su tiburón de goma. No me deja hablar, siempre se adueña de la conversación. “Oye, que guapo el vecino que nos ha tocado”, es lo que más le repiten a mi niño estas personas, que toleran y disfrutan sus travesuras con la frase “es un niño, es normal, no se preocupe”. Por eso le encanta salir a “hacer diligencias”.

Escrito por:

Larry Francis Obando – Technical Specialist – Educational Content Writer

Tutoría Académica / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

WhatsApp: +34 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

email: dademuchconnection@gmail.com

Twitter: @dademuch

FACEBOOK: DademuchConnection

Matemática básica, Polinomios

División de polinomios por el método de Ruffini – Ejemplos

La división de dos polinomios puede realizarse con mayor rapidez por un procedimiento que recibe el nombre de Regla de Ruffini. El primer caso es cuando el divisor es de la forma x + a

Binomio x + a

Ejemplo 1, efectuar:

null

  1. El primer paso de la regla de Ruffini es encontrar la raíz del divisor. En la división del ejemplo 1, el divisor es el binomio x + 1. La raíz de este binomio es el valor de x para el cual se cumple que x + 1=0. Se procede entonces de la siguiente manera:

null

2. Con los coeficientes del dividendo y la raíz del divisor, formamos la siguiente tabla. Los coeficientes del dividendo son 1, 5, 0, -3, -2, 0, 6, -3 y 5. Mediante las operaciones de suma y multiplicación obtenemos los coeficientes del cociente (tercera fila en la siguiente tabla) y el resto (último número de la tercera fila). El primer coeficiente del cociente es igual al primer coeficiente del dividendo, es decir, 1:

null

3. En la figura anterior, la segunda fila compuesta por -1, -4, 4, -1, 3, -3, -3, 6., se obtiene de multiplicar la raíz -1 por los componentes de la tercera fila, que es a su vez resultado de sumar los números en cada columna, según indican las flechas hacia debajo de la figura anterior. Primero se multiplica y después se suma, es decir:

null

Y así sucesivamente.

null

4. El cociente tendrá un grado menos que el dividendo. En este caso, el grado del dividendo es 8, y el grado del cociente es 7. El resultado de la división genera el cociente Q(x) y el residuo R:

null

Ejemplo 2, efectuar:

null

Utilizando Ruffini y aplicando los mismos procedimientos:

null

null

Cuando el residuo es cero, se dice que la división es exacta.

Ejemplo 3, efectuar:

null

Utilizando Ruffini y aplicando los mismos procedimientos:

null

Ejemplo 4, efectuar:

null

Debido a que los exponentes de la variable x en el dividendo, son múltiplos del exponente de la variable x en el divisor, podemos utilizar Ruffini, aplicando previamente una sustitución de variable:

null

Fuente: Selección de temas de Matemática 5 – Jorge Gid Hoffmann

Escrito por:

Profesor Larry: Clases presenciales y Online, matemática y física de primaria y secundaria. WhatsApp: +34 633129287 (Jaén Capital).

Publicidad

Technical Specialist – Educational Content Writer

Tutoría Académica / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

WhatsApp: +34 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

email: dademuchconnection@gmail.com

Twitter: @dademuch

FACEBOOK: DademuchConnection

Sin categoría

Resguardo de protección internacional España.

Debido al ingente aumento en el número de solicitantes de Protección Internacional se ha incrementado la expedición de la documentación acreditativa…

Resguardo proteccion internacional España

 

Requerimiento de subsanación - (Requisitos para Solicitud de visa estudiante)

Visa Estudiante Requisitos

Larry Francis Obando – Technical Specialist – Educational Content Writer

Tutoría Académica / Emprendedores / Empresarial

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, CCs.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contacto: Jaén – España: Tlf. 633129287

WhatsApp: +34 633129287

Caracas, Quito, Guayaquil, Lima, México, Bogotá, Cochabamba, Santiago.

email: dademuchconnection@gmail.com

Twitter: @dademuch

FACEBOOK: DademuchConnection

The Learning Organization

Learning Organization – Conceptual Framework.

The basic meaning of a learning organization is an organization that is continually expanding its capacity to create its future.

The five "component technologies" to innovate learning organizations.

The ferment in management will continue until we build organizations that are more consistent with man’s higher aspirations beyond food, shelter and belonging.” Moreover, many who share these values are now in leadership positions. I find a growing number of organizational leaders who, while still a minority, feel they are part of a profound evolution in the nature of work as a social institution. “Why can’t we do good works at work?” asked Edward Simon, president of Herman Miller, recently.

Business is the only institution that has a chance, as far as I can see, to fundamentally improve the injustice that exists in the world. But first, we will have to move through the barriers that are keeping us from being truly vision-led and capable of learning.” Perhaps the most salient reason for building learning organizations is that we are only now starting to understand the capabilities such organizations must possess.

For a long time, efforts to build learning organizations were like groping in the dark until the skills, areas of knowledge, and paths for development of such organizations became known. What fundamentally will distinguish learning organizations from traditional authoritarian “controlling organizations” will be the mastery of certain basic disciplines. That is why the “disciplines of the learning organization” are vital.

Today, I believe, five new “component technologies” are gradually converging to innovate learning organizations. Though developed separately, each will, I believe, prove critical to the others’ success, just as occurs with any ensemble. Each provides a vital dimension in building organizations that can truly “learn,” that can continually enhance their capacity to realize their highest aspirations:

  1. Systems thinking is a conceptual framework, a body of knowledge and tools that has been developed over the past fifty years, to make the full patterns clearer, and to help us see how to change them effectively.
  2. Personal Mastery. People with a high level of personal mastery are able to consistently realize the results that matter most deeply to them— in effect, they approach their life as an artist would approach a work of art. They do that by becoming committed to their own lifelong learning. Personal mastery is the discipline of continually clarifying and deepening our personal vision, of focusing our energies, of developing patience, and of seeing reality objectively. As such, it is an essential cornerstone of the learning organization—the learning organization’s spiritual foundation. But surprisingly few organizations encourage the growth of their people in this manner. This results in vast untapped resources: “People enter business as bright, welleducated, high-energy people, full of energy and desire to make a difference,” says Hanover’s O’Brien. “By the time they are 30, a few are on the “fast track” and the rest ‘put in their time’ to do what matters to them on the weekend. They lose the commitment, the sense of mission, and the excitement with which they started their careers. We get damn little of their energy and almost none of their spirit.” And surprisingly few adults work to rigorously develop their own personal mastery. Here, I am most interested in  the connections between personal learning and organizational learning, in the reciprocal commitments between individual and organization, and in the special spirit of an enterprise made up of learners.
  3. Mental Models. The discipline of working with mental models starts with turning the mirror inward; learning to unearth our internal pictures of the world, to bring them to the surface and hold them rigorously to scrutiny. It also includes the ability to carry on “learningful” conversations that balance inquiry and advocacy, where people expose their own thinking effectively and make that thinking open to the influence of others.
  4. Building Shared Vision. The practice of shared vision involves the skills of unearthing shared “pictures of the future” that foster genuine commitment and enrollment rather than compliance. In mastering this discipline, leaders learn the counterproductiveness of trying to dictate a vision, no matter how heartfelt.
  5. Team Learning. How can a team of committed managers with individual IQs above 120 have a collective IQ of 63? The discipline of team learning confronts this paradox. We know that teams can learn; in sports, in the performing arts, in science, and even, occasionally, in business, there are striking examples where the intelligence of the team exceeds the intelligence of the individuals in the team, and where teams develop extraordinary capacities for coordinated action. When teams are truly learning, not only are they producing extraordinary results but the individual members are growing more rapidly than could have occurred otherwise. If a learning organization were an engineering innovation, such as the airplane or the personal computer, the components would be called “technologies.”

For an innovation in human behavior, the components need to be seen as disciplines. By “discipline,” I do not mean an “enforced order” or “means of punishment,” but a body of theory and technique that must be studied and mastered to be put into practice. A discipline is a developmental path for acquiring certain skills or competencies. As with any discipline, from playing the piano to electrical engineering, some people have an innate “gift,” but anyone can develop proficiency through practice.

System Thinking - The Fifth Discipline

It is vital that the five disciplines develop as an ensemble. This is why systems thinking is the fifth discipline. It is the discipline that integrates the disciplines, fusing them into a coherent body of theory and practice. It keeps them from being separate gimmicks or the latest organization change fads. Without a systemic orientation, there is no motivation to look at how the disciplines interrelate. By enhancing each of the other disciplines, it continually reminds us that the whole can exceed the sum of its parts.

But systems thinking also needs the disciplines of building shared vision, mental models, team learning, and personal mastery to realize its potential. Building shared vision fosters a commitment to the long term. Mental models focus on the openness needed to unearth shortcomings in our present ways of seeing the world. Team learning develops the skills of groups of people to look for the larger picture that lies beyond individual perspectives. And personal mastery fosters the personal motivation to continually learn how our actions affect our world. Without personal mastery, people are so steeped in the reactive mindset (“someone/something else is creating my problems”) that they are deeply threatened by the systems perspective.

At the heart of a learning organization is a shift of mind—from seeing ourselves as separate from the world to connected to the world, from seeing problems as caused by someone or something “out there” to seeing how our own actions create the problems we experience. A learning organization is a place where people are continually discovering how they create their reality. And how they can change it. People talk about being part of something larger than themselves, of being connected, of being generative.

Metanoia

The word is “metanoia” and it means a shift of mind. In the early (Gnostic) Christian tradition, it took on a special meaning of awakening shared intuition and direct knowing of the highest, of God.

To grasp the meaning of “metanoia” is to grasp the deeper meaning of “learning,” for learning also involves a fundamental shift or movement of mind.

Real learning gets to the heart of what it means to be human. Through learning we re-create ourselves. Through learning we become able to do something we never were able to do. Through learning we reperceive the world and our relationship to it. Through learning we extend our capacity to create, to be part of the generative process of life. There is within each of us a deep hunger for this type of learning.

This, then, is the basic meaning of a “learning organization”—an organization that is continually expanding its capacity to create its future. For such an organization, it is not enough merely to survive. “Survival learning” or what is more often termed “adaptive learning” is important—indeed it is necessary. But for a learning organization, “adaptive learning” must be joined by “generative learning,” learning that enhances our capacity to create.

A few brave organizational pioneers are pointing the way, but the territory of building learning organizations is still largely unexplored. It is my fondest hope that this book can accelerate that exploration: The-Fifth-Discipline.

Source:

  • The Fifth Discipline – The Art and Practices of Learning Organizations. By Peter M. Senge – 1990

Literature Review made by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Probabilidades

Modelo probabilístico – Axiomas.

Un modelo probabilístico es una descripción matemática de una situación incierta. Debe estar de acuerdo con un marco teórico fundamental que tenga dos ingredientes principales: null

Espacio de muestra Ω y Evento (The sample space Ω)

Cada modelo probabilístico implica un proceso subyacente, llamado experimento, que producirá exactamente uno de varios resultados posibles. El conjunto de todos los resultados posibles se denomina Espacio Muestral del experimento y se denota con Ω. Un subconjunto del espacio muestral, es decir, una recopilación de posibles resultados, se denomina Evento. Es importante tener en cuenta que en nuestra formulación de un modelo probabilístico, solo hay un experimento.

El espacio muestral de un experimento puede consistir en un número finito o infinito de resultados posibles. Los espacios muestrales finitos son conceptualmente y matemáticamente más simples. Aún así, los espacios muestrales con un número infinito de elementos son bastante comunes. Como ejemplo, considere lanzar un dardo sobre un objetivo cuadrado y ver el punto de impacto como resultado.

Independientemente de su número, los diferentes elementos del espacio muestral deben ser distintos y mutuamente excluyentes, de modo que, cuando se lleve a cabo el experimento, haya un resultado único.

Generalmente, el espacio muestral elegido para un modelo probabilístico debe ser colectivamente exhaustivo, en el sentido de que no importa lo que suceda en el experimento, siempre obtenemos un resultado que se ha incluido en el espacio muestral. Además, el espacio de muestra debe tener suficientes detalles para distinguir entre todos los resultados de interés para el modelador, mientras se evitan los detalles irrelevantes.

Para resumir: este conjunto denominado Espacio Muestral debe ser tal que, al final del experimento, siempre se pueda señalar uno y exactamente uno de los posibles resultados y decir que este es el resultado que se produjo. Los resultados físicamente diferentes deben distinguirse en el espacio muestral y corresponder a puntos distintos. Pero cuando decimos resultados físicamente diferentes, ¿qué queremos decir? Realmente queremos decir diferente en todos los aspectos relevantes, pero quizás no diferente en aspectos irrelevantes.

Leyes de Probabilidad

Supongamos que nos hemos asentado en el espacio muestral Ω asociado con un experimento en particular, proceso esbozado en el apartado anterior. Para completar el modelo probabilístico, ahora debemos introducir una Ley de Probabilidad.

Intuitivamente, una ley de probabilidad especifica la “probabilidad” de cualquier resultado , o de cualquier conjunto de posibles resultados (un evento, como lo llamamos antes) que forman parte del espacio muestral Ω. Más precisamente, la ley de probabilidad asigna a cada evento A, un número P (A), denominado probabilidad de A, que satisface los siguientes axiomas:

1. No negatividad.

null

2. Aditividad. Si A y B son dos conjuntos disjuntos, entonces la probabilidad de su unión satisface lo siguiente:

null

Más genéricamente, si el espacio muestral  tiene un número infinito de eventos y A1, A2, A3, A4,… es una secuencia de conjuntos disjuntos de eventos, entonces la probabilidad de su unión satisface lo siguiente:

null

3. Normalización. La probabilidad de todo el espacio muestral  es igual a 1:

null

Para visualizar en que consiste la ley de probabilidad, considere una unidad de masa que se “extiende” sobre todo el espacio muestral Ω. Entonces, P (A) es simplemente la masa total que fue asignada colectivamente a los elementos de A. En términos de esta analogía, el axioma de aditividad se vuelve bastante intuitivo: la masa total en una secuencia de eventos (o conjunto de eventos) separados es la suma de sus masas individuales

Hay muchas propiedades naturales que pueden derivarse de los anteriores enunciados. Por ejemplo, utilizando los axiomas de normalización y aditividad podemos encontrar la probabilidad del evento vacío (o conjunto vacío) P (Ø) como sigue

null

Esto implica que:

null

Modelo Discreto - Ley de probabilidad discreta

Si el espacio muestral consiste en un número finito de resultados posibles, entonces la ley de probabilidad se especifica por las probabilidades de los eventos que consisten en un solo elemento. En particular, la probabilidad de cualquier  evento {s1, s2, …., sn} es la suma de las probabilidades de cada uno de sus elementos:

null

En el caso especial donde las probabilidades P(s1), P(s2), …, P(sn) son todas de un mismo valor, tomando en cuenta el axioma de normalización, obtenemos la siguiente ley.

Discrete Uniform Probability Law 

Si el espacio muestral consta de n resultados posibles que son igualmente probables (es decir, todos los eventos de un solo elemento tienen la misma probabilidad), la probabilidad de cualquier evento A nos es dada por:

null

Modelo Continuo

Los modelos probabilísticos con espacio muestral continuo se diferencian de sus homólogos discretos en que las probabilidades de los eventos de un solo elemento pueden no ser suficientes para caracterizar la ley de probabilidad.

Propiedades de las leyes de probabilidad

Las leyes de probabilidad tienen una serie de propiedades, que pueden deducirse de los axiomas. Algunos de ellas se resumen a continuación.:

null

El rol de la teoría de probabilidades.

La teoría de la probabilidad puede ser una herramienta muy útil para hacer predicciones y decisiones que se aplican al mundo real. Ahora, si sus predicciones y decisiones serán buenas dependerá de si ha elegido un buen modelo. ¿Has elegido un modelo que proporcione una representación suficientemente buena del mundo real? ¿Cómo se asegura de que este sea el caso? Existe todo un campo, el campo de las estadísticas, cuyo propósito es complementar la teoría de la probabilidad utilizando datos para obtener buenos modelos. Y así tenemos el siguiente diagrama que resume la relación entre el mundo real, las estadísticas y la probabilidad. El mundo real genera datos. El campo de estadística e inferencia utiliza estos datos para generar modelos probabilísticos. Una vez que tenemos un modelo probabilístico, utilizamos la teoría de la probabilidad y las herramientas de análisis que nos proporciona. Y los resultados que obtenemos de este análisis conducen a predicciones y decisiones sobre el mundo real. Video sugerido: Interpretation and uses of Probability

 

null

 

Fuentes:

  1. Introduction to probability (bertsekas, 2nd, 2008)
  2. Probability – The Science of Uncertainty and Data (MITx – 6.431x)

Revisión literaria hecha por:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Matemática aplicada - Appd Math, Probability

Probabilistic model – models and axioms.

A probabilistic model is a mathematical description of an uncertain situation. It must be in accordance with a fundamental framework which has two main ingredients:

null

Sample space and Events

Every probabilistic model involves an underlying process, called the experiment,  that will produce exactly one out of several possible outcomes. The set of all possible outcomes is called the sample space of the experiment, and is denoted by . A subset of the sample space, that is, a collection of possible outcomes, is called an Event. It is important to note that in our formulation of a probabilistic model, there is only one experiment.

The sample space of an experiment may consist of a finite or an infinite number of possible outcomes. Finite sample spaces are conceptually and mathematically simpler. Still, sample spaces with an infinite number of elements are quite common. As an example, consider throwing a dart on a square target and viewing the point of impact as the outcome.

Regardless of their number, different elements of the sample space should be distinct and mutually exclusive, so that, when the experiment is carried out, there is a unique outcome.

Generally, the sample space chosen for a probabilistic model must be collectively exhaustive, in the sense that no matter what happens in the experiment, we always obtain an outcome that has been included in the sample space. In addition, the sample space should have enough detail to distinguish between all outcomes of interest to the modeler, while avoiding irrelevant details.

To summarize– this set should be such that, at the end of the experiment, you should be always able to point to one, and exactly one, of the possible outcomes and say that this is the outcome that occurred. Physically different outcomes should be distinguished in the sample space and correspond to distinct points. But when we say physically different outcomes, what do we mean? We really mean different in all relevant aspects but perhaps not different in irrelevant aspects.

Probability Laws

Suppose we have settled on the sample space associated with an experiment. To complete the probabilistic model, we must now introduce a Probability Law.

Intuitively, a probability law specifies the “likelihood” of any outcome, or of any set of possible outcomes (an event, as we called it early). More precisely, the probability law assigns to every event A, a number P(A), called the probability of A, satisfying the following axioms:

1. Nonnegativity.

null

2. Additivity. If A and B are two disjoints events, then the probability of their union satisfies the following:

null

More generally, if the sample space has an infinite number of elements and A1, A2, A3, A4,… is a sequence of disjoint events, then the probability of their union satisfies:

null

3. The probability of the entire sample space is equal to 1, that is:

null

In order to visualize a probability law, consider a unity of mass which is “spread” over the sample space . Then, P(A) is simply the total mass that was assigned collectively to the elements of A. In terms of this analogy, the additivity axiom becomes quite intuitive: the total mass in a sequence of disjoint events is the sum of their individual masses.

There are many natural properties of a probability law which can be derived from them. For example, using the normalization and additivity axioms we may find out the probability of the empty event P(Ø) as following:

null

This implies that:

null

Discrete Model - Discrete Probability Law 

If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element. In particular, the probability of any event {s1, s2, …., sn} is the sum of the probabilities of its elements:

null

In the special case where the probability P(s1), P(s2), …, P(sn) are all the same, in view of the normalization axiom we obtain the following law.

Discrete Uniform Probability Law 

If the sample space consists of n possible outcomes which are equally likely (i.e., all single-element events have the same probability), the probability of any event A us given by:

null

Continuous Model

Probabilistic models with continuous sample space differ from their discrete counterparts in that the probabilities of the single-element events may not be sufficient to characterize the probability law.

Properties of Probability Laws

Probability laws have a number of properties, which can be deduced from the axioms. Some of them are summarized below:

null

The role of Probability Theory

Probability theory can be a very useful tool for making predictions and decisions that apply to the real world. Now, whether your predictions and decisions will be any good will depend on whether you have chosen a good model. Have you chosen a model that’s provides a good enough representation of the real world? How do you make sure that this is the case? There’s a whole field, the field of statistics, whose purpose is to complement probability theory by using data to come up with good models. And so we have the following diagram that summarizes the relation between the real world, statistics, and probability. The real world generates data. The field of statistics and inference uses these data to come up with probabilistic models. Once we have a probabilistic model, we use probability theory and the analysis tools that it provides to us. And the results that we get from this analysis lead to predictions and decisions about the real world.  Suggested video: Interpretation and uses of Probability

null

 

Sources:

  1. Introduction to probability (bertsekas, 2nd, 2008)
  2. Probability – The Science of Uncertainty and Data (MITx – 6.431x)

Literature review made by:

Prof. Larry Francis Obando – Technical Specialist – Educational Content Writer

Twitter: @dademuch

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, UCV CCs

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, USB Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca. telf – 0998524011

WhatsApp: +593998524011   +593981478463 

Twitter: @dademuch

FACEBOOK: DademuchConnection

email: dademuchconnection@gmail.com

Travel Writing

Requisitos Visa de Estudio España – Lo más importante.

Resulta insuficiente la información que aparece en la página web del Ministerio de Asuntos Exteriores del Gobierno de España, referida a la solicitud de Visa de Estudio para un tiempo mayor de 90 días. En Guayaquil, hoy 4 de julio del 2019, mi esposa entregó en el Consulado Español todos los documentos solicitados en la siguiente dirección:

http://www.exteriores.gob.es/Consulados/GUAYAQUIL/es/InformacionParaExtranjeros/Paginas/VisadosGuayaquil/Visado_Estudios.aspx

Sin embargo, sólo al pagar la cita y la tasa ($70) y asistir a dicha cita, fue correctamente atendida e informada de los requisitos para obtener la Visa, entre los cuales destaca el requerimiento imprescindible de contar con al menos 9.000 dólares en una cuenta bancaria (o tarjeta de crédito, beca, préstamo..por la misma cantidad).

La funcionaria que le atendió, hizo caso omiso al resto de los documentos presentados: seguro médico, boleto aéreo (sólo se requiere la reserva), matrícula de estudio pagada, reserva de alojamiento, certificado médico, antecedentes penales…Ella fue directamente al estado de cuenta y de inmediato informó a mi esposa que no contaba con los recursos financieros suficientes, al menos 9.000 dólares, para un postgrado de un año en Andalucía.

Por tanto, es lo más importante para ellos, el capital. No vale la pena engañarse invirtiendo tiempo y dinero en el resto de los requisitos si no se cuenta con el principal. A continuación, una copia del documento donde aparecen los requisitos…el que debería circular en internet para evitar pecar de ingenuo:

Requerimientos de subsanación..

Visa Estudiante Requisitos

A modo de advertencia, cabe acotar que a pesar de consultar a varios asesores que pululan como moscas alrededor de los consulados españoles en América, ninguno nos advirtió de ese requisito principal, resaltando que en la mayoría de dichos asesores priva la necesidad de cobrar primero por gestiones como la reserva aérea o el seguro médico, antes que espantar al cliente potencial con la información esencial sobre el capital.

Nuevo resguardo de solicitud de protección internacional - España

Resguardo proteccion internacional España

Para mayor información:

Prof. Larry

whatsapp +34 633129287

Matemática básica

Símbolos matemáticos básicos más importantes – Tutor Larry

Lógica de predicados.

Cuantificadores.

  1. Cuantificador existencial (∃). Se utiliza para decretar que un elemento cualquiera, existe en las matemáticas, y exhibe tal o cual propiedad. Se lee existe.
  2. Cuantificador existencial con unicidad (∃!). Decreta que existe un único elemento que cumple con cierta propiedad. Se lee existe un único.
  3. Cuantificador universal (∀). Expresa que tal propiedad se cumple para la totalidad de un conjunto de elementos. Se lee para todos.
  4. Tal que (/). Todos los elementos tal que se verifique una propiedad particular. También se utiliza para este caso el símbolo (:)

Ejemplo:

  1. Supongamos que queremos resolver la siguiente ecuación:

Si sabemos que la ecuación tiene solución, y expresamos esa solución con palabras, diríamos:

Utilizando la notación Lógica de predicados, podemos escribir de forma matemática la declaración anterior de la siguiente manera:

También se puede escribir:

 

  1. La expresión ‘para todo x se cumple que x=x’ se puede escribir como:

 

 

Órdenes parciales.

Comparación.

  1. El símbolo significa menor que, por tanto, la expresión  significa: a menor que b.
  2. El símbolo significa mayor que, por tanto, la expresión  significa: a mayor que b.
  3. El símbolo significa menor o igual que, por tanto, la expresión  significa: a menor igual que b.
  4. El símbolo significa mayor que, por tanto, la expresión  significa: a mayor o igual que b.

 

Teoría de conjuntos.

Pertenencia.

  1. Pertenece a (). Se lee pertenece a. Lo contrario se escribe (). Supongam0s que tenemos un conjunto A, y tenemos un elemento que pertenece al conjunto A, podemos escribir esto como:

Lo cual se lee como  pertenece a A.

Inclusión de símbolos.

  1. Contenido en ().Se lee está contenido en. Lo contrario se escribe (). Supongam0s que tenemos un conjunto A, y tenemos otro conjunto Si el conjunto A está incluido en el conjunto B, podemos escribir esto como:

Lo cual se lee como A está incluido en B.

  1. Subconjunto o igual que ().Se lee es subconjunto de o es igual que. Lo contrario se escribe () que se lee ni subconjunto de o no es igual que.