Ingeniería Mecánica, Variables de estado

Representación de un sistema en variables de estado

En términos generales, la finalidad del método es expresar un sistema mediante la estructura vectorial siguiente:

La finalidad es reducir un sistema de orden n a un sistema de primer orden, representado por el vectornullen la ecuación anterior.

La gran ventaja de utilizar variables de estado es que, para un sistema con muchas variables, como es el caso de un sistema masa-resorte-amortiguador o de un sistema eléctrico, necesitamos usar ecuaciones diferenciales solo para resolver un subconjunto seleccionado de variables del sistema. A partir de allí todas las demás variables del sistema se pueden evaluar algebraicamente.

El primer paso es entonces decidir cuáles serán esas variables que forman este subconjunto de variables de estado, que en las ecuaciones anteriores está representado por el vector X. Y a partir de ese conjunto, las otras variables se pueden expresar como función de las variables seleccionadas. Parece un trabalenguas, por ello mejor explicarse mediante un ejemplo.

Supongamos que tenemos el sistema de la Figura 3.5

1er paso. En este ejemplo la clave para seleccionar las variables de estado son los elementos del sistema que almacenan energía porque son los que requieren de ecuaciones diferenciales para explicar su dinámica. Por ello escribimos dichas ecuaciones para el inductor y el capacitor:

De las ecuaciones anteriores es conveniente para nuestra representación en variables de estado seleccionar los parámetros que están derivados, es decir:

2do paso. Para lograr la finalidad del método que se explicó al principio de este documento, vemos de inmediato que si tomamos nuestras dos ecuaciones diferenciales anteriores y despejamos las derivadas de las variables de estado seleccionadas (lado izquierdo), ya tenemos adelantada la estructura que buscamos alcanzar:

3er paso. Sin embargo, el lado derecho no está en función de las variables de estado seleccionadas, por lo que debemos utilizar otras ecuaciones para lograr esto. Aplicamos Kirchhoff de corriente para lograr Ic, y de voltaje para lograr Vl en función de las variables de estado seleccionadas:

Sustituimos:

4to paso. Y así hemos alcanzado expresar la dinámica de nuestro sistema en términos de las variables de estado seleccionadas:

Nota: no depende de , pero la incluimos multiplicada por cero para resaltar el hecho de que debemos expresar el lado derecho en términos de las ecuaciones de estado y pasar de allí a la forma matricial presentada más adelante.

5to paso. Para completar el método sólo nos falta hallar la salida en función de las variables de estado. Si seleccionamos la salida como la corriente que atraviesa la resistencia R, y la llamamos IR, obtenemos directamente que:

O lo que es lo mismo:

Representamos así nuestro sistema en variables de estado de la forma matricial siguiente:

Una ecuación diferencial de primer orden requiere de una variable de estado. Una de segundo orden requiere de dos variables de estado. Y así sucesivamente, por ende, se podría demostrar el siguiente criterio:

  • Una ecuación de orden n genera n variables de estado

Debemos repetir que independientemente del orden de las ecuaciones diferenciales en la dinámica del sistema, la finalidad es reducir un sistema de orden n a un sistema de primer orden.

Estos criterios nos ayudan a abordar el caso del sistema masa-resorte-amortiguador, donde aplicaremos el mismo método para obtener su representación en variables de estado.

Sistema Masa-Resorte-Amortiguador

Supongamos ahora que tenemos el sistema de la Figura 2.15, para el cual ya habíamos encontrado su Función de Transferencia (ver: Ejemplo 2 – Función Transferencia de sistema masa-resorte-amortiguador):

Debemos encontrar para este sistema su representación en variables de estado.

Para ver todo el resultado ver el siguiente link: Ejemplo 1 – Representación en Variables de Estado de un Sistema Masa-Resorte-Amortiguador

Escrito por: Larry Francis Obando – Technical Specialist – Educational Content Writer.

Mentoring Académico / Emprendedores / Empresarial

Escuela de Ingeniería Eléctrica de la Universidad Central de Venezuela, Caracas.

Escuela de Ingeniería Electrónica de la Universidad Simón Bolívar, Valle de Sartenejas.

Escuela de Turismo de la Universidad Simón Bolívar, Núcleo Litoral.

Contact: Caracas, Quito, Guayaquil, Cuenca – Telf. 00593998524011

WhatsApp: +593998524011

email: dademuchconnection@gmail.com

Copywriting, Content Marketing, Tesis, Monografías, Paper Académicos, White Papers (Español – Inglés)

Atención:

Si lo que Usted necesita es resolver con urgencia un problema de “Sistema Masa-Resorte-Amortiguador” (encontrar la salida X(t), gráficas en Matlab del sistema de 2do Orden y parámetros relevantes, etc.), o un problema de “Sistema de Control Electromecánico” que involucra motores, engranajes, amplificadores diferenciales, etc…para entregar a su profesor en dos o tres días, o con mayor urgencia…o simplemente necesita un asesor para resolver el problema y estudiar para el próximo examen…envíeme el problema…Yo le resolveré problemas de Sistemas de Control, le entrego la respuesta en digital y le brindo una video-conferencia para explicarle la solución…incluye además simulación en Matlab. En el link encontrará la descripción del servicio y su costo.

Relacionado:

Ejemplo 1 – Función Transferencia de sistema masa-resorte-amortiguador

Ejemplo 1 – Función Transferencia de Sistema Electromecánico

Simulación de Respuesta Transitoria con Matlab – Introducción

Diagrama de Bloques – Ingeniería de Control

Dinámica de un Sistema Masa-Resorte-Amortiguador

Diagrama de Bloques de Sistema Electromecánico con Motor DC

Anuncios